Abstract:
A flood beam electron gun is provided for use in remediation of hazardous volatile organic compounds (VOC) contained within a detoxification vessel. The flood beam electron gun comprises an electron emitter having a rounded emitting surface providing a conical electron beam. A control grid is spaced from and disposed substantially parallel to the emitting surface. The control grid has a plurality of holes disposed in a first pattern providing an array of individual electron beams from the conical electron beam of the emitter. An intermediate electrode is spaced from the emitter and the control grid, and has an aperture therethrough providing a substantially parallel flow of the array of individual electron beams. A target grid is spaced from the intermediate electrode and opposite from the cathode and control grid. The target grid has a plurality of holes disposed in a second pattern that is proportional to and substantially larger than the first pattern. Each of the individual electron beams pass through respective ones of the plurality of holes in registration thereof. A vacuum barrier is provided on a downstream side of the target grid to separate the electron gun from the vessel. The individual electron beams pass through the vacuum barrier into the vessel. Within the vessel, the electrons of the individual beams impact the VOCs, converting the VOCs to less hazardous organic compounds.
Abstract:
A data storage medium comprising a substrate and a data storage layer formed on the substrate. The data storage layer comprises a fixed number of atomic layers of a magnetic material which provide the data storage layer with a magnetic anisotropy perpendicular to a surface of the data storage layer. A data magnetic field is created in the data storage layer. The data magnetic field is polarized either in a first direction corresponding to a first data value or in a second direction corresponding to a second data value. Data is stored in the data storage layer by providing a spin-polarized electron having an electron magnetic field with a direction of polarization corresponding to one of the first and the second data values, and directing the spin-polarized electron at the data magnetic field to impart the direction of polarization of the electron magnetic field to the data magnetic field. Data is read from the data storage layer by directing the spin-polarized electron at the data magnetic field and detecting a deflection or attraction of the spin-polarized electron by the data magnetic field. Alternatively, data is read from the data storage layer by directing the spin-polarized electron at the data magnetic field so that the magnetic medium produces a secondary electron and then detecting certain characteristics of the secondary electron.
Abstract:
A compact, high power electron gun having enhanced thermal and mechanical stability which incorporates a mechanically coupled, self aligning structure for the anode and cathode. The enhanced stability, and reduced need for realignment of the cathode to the anode and downstream optics during operation are achieved by use of a common support structure for the cathode and anode which requires no adjustment screws or spacers. The electron gun of the present invention also incorporates a modular design for the cathode, in which the electron emitter, its support structure, and the hardware required to attach the emitter assembly to the rest of the gun are a single element. This modular design makes replacement of the emitter simpler and requires no realignment after a new emitter has been installed. Compactness and a reduction in the possibility of high voltage breakdown are achieved by shielding the "triple point" where the electrode, insulator, and vacuum meet. The use of electric discharge machining (EDM) for fabricating the emitter allows for the accurate machining of the emitter into intricate shapes without encountering the normal stresses developed by standard emitter fabrication techniques.
Abstract:
A high resolution matrix addressed flat panel display having single field emission microtip redundancy is formed. A dielectric base substrate is provided. Parallel, spaced conductors acting as cathode columns for the display are formed upon the substrate. A layer of insulation is located over the cathode columns. Parallel, spaced conductors acting as gate lines for the display is formed over the layer of insulation at a right angle to the cathode columns. The intersections of the cathode columns and gate lines are the pixels of the display. A plurality of openings at the pixels extend through the insulating layer and gate lines. At each of the pixels are a plurality of field emission microtips connected to and extending up from the cathode conductor columns and into the plurality of openings. There is a circular resistive layer surrounding each of the field emission microtips to obtain emission uniformity by sustaining the cathode to gate voltage.
Abstract:
A method of forming a self-aligned gated field emitter with reduced gate opening and uniform gate height, on a substrate, is described. A field emitter is formed on the substrate. A thin, conformal dielectric layer is formed over the field emitter and the substrate. A thick dielectric layer is formed over the thin, conformal dielectric layer. The thick dielectric layer is planarized. The thick dielectric layer is etched back. A conductive layer is formed over the thick dielectric layer. The conductive layer is planarized and then etched back. The field emitter is exposed by forming an opening in the conductive layer, by removing the portion of the thin, conformal dielectric layer above and around the top of the field emitter.
Abstract:
A field-emission electronic device works as a field-emission electron source. The field-emission electronic device comprises an anode electrode, a first insulating member disposed on the anode electrode, a cathode electrode disposed on the first insulating member, a second insulating member disposed on the anode electrode at a distance from the first insulating member, and a gate electrode disposed on the second insulating member. Therefore, the field-emission electronic device can be formed to make the distance between the electrodes smaller than that of the known field-emission electronic device. Concretely, the distances between the cathode electrode and the gate electrode and between the cathode electrode and the anode electrode are allowed to be reduced. This results in lowering a gate voltage and an anode voltage.
Abstract:
An electron gun is modulated by an optoelectronic switching device. This switching device comprises a modulated light source and at least one GaAs or Si solid-state optoelectronic switch, this switch being non-conductive when not illuminated and conductive when illuminated by the modulated light source; the device also includes components to transmit the light from the source to the switch(es). In one embodiment, the modulated light source is a laser and in a second embodiment the source is a continuous source externally modulated by a mechanical or electrooptical device. The optoelectronic switching device is connected between a high-voltage source and the cathode of an electron gun, thus modulating the cathode.The invention is particularly applicable to microwave electron tubes.
Abstract:
A high energy level electronic device is segregated into source diode and utilization diode portions, portions which may also be identified as cathode and main diode portions, respectively. The cathode diode portion is operated at a low voltage such that closure velocity effects therein although present, are minimized. A current of electrons, generated by in cathode diode plasma is fed to the second diode through an anode screen portion of the cathode diode. In this arrangement, since there are electrons, but no plasma cathode present in the main diode, no closing problem occurs therein. In this arrangement, therefore the cathode diode is effectively a source of current for the main diode and is operated at minimal voltage to enable the provision of current for a maximum length of time prior to closure effect terminations. The main diode is separated from the plasma and therefore may be operated at any arbitrarily high voltage free from closing effects, which remain isolated and controlled in the cathode diode. Separate pulse forming network energization of the cathode and main diode portions of the device are also disclosed.
Abstract:
A vacuum microelectronic transistor which can operate at a high speed and has a high mutual conductance. The vacuum microelectronic transistor comprises an emitter for emitting electrons therefrom, a collector for receiving electrons from the emitter, and a pair of gate electrodes for controlling arrival of electrons from the emitter to the collector. The emitter and collector are disposed in an encapsulated condition on a substrate such that electrons emitted from the emitter run straightforwardly in vacuum to the collector while the gate electrodes are located adjacent and across a route of such electrons from the emitter to the collector. Also, a process of manufacturing such vacuum microelectronic transistor is disclosed.
Abstract:
Electron devices employing electron sources including a material having a surface exhibiting a very low/negative electron affinity such as, for example, the 111 crystallographic plane of type II-B diamond. Electron sources with geometric discontinuities exhibiting radii of curvature of greater than approximately 1000.ANG. are provided which substantially improve electron emission levels and relax tip/edge feature requirements. Electron devices employing such electron sources are described including image generation electron devices, light source electron devices, and information signal amplifier electron devices.