Abstract:
A method for measuring and adjusting gaps between a rotor and a stator of a machine using a sensor is provided. The measuring is conducted when the rotor is operated at a rotational speed below a nominal rotational speed of the machine and without the machine being in operation. The adjusting of the gap is carried out as a function of at least one gap dimension of the gap. The sensor is not resistant to an operating temperature of the machine occurring in a region where the sensor is located. After completion of the measuring the machine is operated with the sensor.
Abstract:
A system for providing sealing in a turbine is provided. The sealing system includes a retaining channel oriented within a housing structure proximate a moving turbine component. A seal member is coupled within the retaining channel. A first end of the seal member is secured to the housing structure. A second end of the seal member is movable relative to the retaining channel between first and second positions corresponding to a transient operational mode and a steady state operational mode, respectively. The transient operational mode defines a first clearance between the seal member and the moving turbine component. The steady state configuration defines a second clearance that is smaller than the first clearance. A take-up device coupled to the second end of the seal member moves the second end between the first and second positions.
Abstract:
A method and apparatus are disclosed for a gas turbine spool design combining metallic and ceramic components in a way that controls clearances between critical components over a range of engine operating temperatures and pressures. In a first embodiment, a ceramic turbine rotor rotates just inside a ceramic shroud and separated by a small clearance gap. The ceramic rotor is connected to a metallic volute. In order to accommodate the differential rates of thermal expansion between the ceramic rotor and metallic volute, an active clearance control system is used to maintain the desired axial clearance between ceramic rotor and the ceramic shroud over the range of engine operating temperatures. In a second embodiment, a ceramic turbine rotor rotates just inside a ceramic shroud which is part of a single piece ceramic volute/shroud assembly. As temperature increases, the ceramic volute expands at approximately the same rate as ceramic shroud and tends to increase the axial clearance gap between the ceramic rotor and ceramic shroud, but only by a small amount compared to a metallic volute attached to the shroud in the same way.
Abstract:
A method for measuring and adjusting gaps between a rotor and a stator of a machine using a sensor is provided. The measuring is conducted when the rotor is operated at a rotational speed below a nominal rotational speed of the machine and without the machine being in operation. The adjusting of the gap is carried out as a function of at least one gap dimension of the gap. The sensor is not resistant to an operating temperature of the machine occurring in a region where the sensor is located. After completion of the measuring the machine is operated with the sensor.
Abstract:
A turbine is provided and includes a turbine shell including shrouds at multiple stages thereof, and constraining elements, disposed at least at first through fourth substantially regularly spaced perimetrical locations around the turbine shell, which are configured to concentrically constrain the shrouds of the turbine shell.
Abstract:
A tip clearance control mechanism for a rotary machine adapted for reducing leakage flows, and minimizing tip vortex size and penetration into main flow that will improve turbine efficiency. The tip clearance control mechanism includes inventive arrangements of a rotating shroud and a shape of the shroud, teeth of various shapes and locations on the rotating shroud, and one or more stator teeth of various shapes and locations on a stationary shroud or casing wall configurations providing comparable tip clearance control. The reduction in leakage flow is a function of how these components are assembled together, which defines a clearance passage between the rotating shroud and the stationary shroud.
Abstract:
A system is provided for controlling rotor blade over-tip leakage of a working fluid in rotating machine. The system has a circumferential row of rotor blades, and a circumferential row of seal segments for sealing with the radially outer tips of the rotor blades to reduce over-tip leakage of the working fluid. The seal segments have an inboard abradable layer which is adapted to be abraded by the blade tips to form a wear track for the blade tips. The system further has one or more tip wearing bodies which are adapted to wear down the blade tips. The thickness of the abradable layer and the cold build radial positions of the blade tips, seal segments and tip wearing bodies are arranged such that, during running-in of the machine, a wear track having a uniform radius is formed in the abradable layer by the blade tips, and the tip wearing bodies also wear down the blade tips to provide a uniform blade tip radius.
Abstract:
A multistage compressor for a turbomachine, in particular an airplane turboprop or turbojet, the compressor comprising a double-walled casing having an inner wall made up of shrouds surrounding respective annular rows of moving blades and annular rows of straightening stator vanes, said shrouds being connected to the outer wall of the casing by independent suspension means enabling the radial clearances between the outer ends of the moving blades and the shrouds of the inner wall of the casing to be adjusted independently from one compression stage to another.
Abstract:
An apparatus and method for controlling a blade tip clearance for a compressor of a turbo-engine, in particular of an aircraft engine, is disclosed. A blade tip clearance control device, which has a rotor and a housing surrounding the rotor forming a blade tip clearance, includes a sealing element that is movable into the blade tip clearance and an actuator unit, where the sealing element is designed as a circumferential shroud liner made of a flexible rubbery material in which at least one tubular diaphragm that is also circumferential is arranged. The diaphragm is acted upon with hydraulic fluid via the actuator unit. This makes it possible to counteract degradation that occurs during operation due to erosion, aging, etc. As a result, efficiency is maintained and the pump limit interval is retained.
Abstract:
A granular composition is applied to tips of rotor blades utilized in a gas turbine engine wherein the blade tips rub against an abradable ceramic layer. Individual grains each have a core of silicon carbide and a layer of aluminum nitride on the core. A layer of a cladding metal may be bonded to the aluminum nitride. The composition also may include particles of cubic boron nitride and/or particles of metal alloy blended with the grains of silicon carbide.