Abstract:
A dispersive optical device for use such as a polarizer, spectroscope, monochromator or the like for utilization as a basic component for a monochromator, polarizer, spectroscope, spectrophotometer or the like, includes a dispersive optical member comprising a first and a second grating (3,4) planar parallel applied on a substrate, preferably reflection gratings with the same grating frequency, said gratings, (3,4) being applied with parallel grating rulings, whereby light defracted by the first grating is arranged to strike the second grating (4). The first grating (3) defines the element's input and the second grating (4) defines the element's output.
Abstract:
A filter spectrograph unit for use in a micro-Raman spectrometer system or a remote sensing system is formed by combining an infinitely variable spectral line rejection filter (having appropriate entrance optics) functionally and operatively with a dispersing spectrograph. The line rejection filter is a modified form of a zero-dispersion double monochromator having an input light signal including laser light scattered from, for example, minute Raman-active particles. The modified double monochromator includes an acylindrical mirror positioned so that the laser line will exit through an aperture in the mirror and all other spectral lines will be reflected and reformed by the modified double monochromator into an output light signal containing all of the original spectral information, less the rejected laser line. The dispersing spectrograph is integrally coupled to the modified double monochromator and produces from the output light signal a display of the entire Raman spectrum suitable for parallel readout and rapid data analysis.
Abstract:
A filter spectrograph unit for use in a micro-Raman spectrometer system or a remote sensing system is formed by combining an infinitely variable spectral line rejection filter (having appropriate entrance optics) functionally and operatively with a dispersing spectrograph. The line rejection filter is a modified form of a zero-dispersion double monochromator having an input light signal including laser light scattered from, for examle, minute Raman-active particles. The modified double monochromator includes an acylindrical mirror positioned so that the laser line will exit through an aperture in the mirror and all other spectral lines will be reflected and reformed by the modified double monochromator into an output light signal containing all of the original spectral information, less the rejected laser line. The dispersing spectrograph is integrally coupled to the modified double monochromator and produces from the output light signal a display of the entire Raman spectrum suitable for parallel readout and rapid data analysis.
Abstract:
The grating of an asymmetric, double pass, grating monochromator has an axis of rotation which extends at an angle Psi relative to a normal to a plane H H''. That plane is normal to, and bisects, a line extending between the monochromator entrance and exit slits. The angle Psi is characterized in that spectral overlap is substantially elmininated.
Abstract:
In a Czerny-Turner monochromator having a curved entrance slit for white light to pass to the mirror and thence the grating, a straight elongated light source is used with optical means, for example a convex lens and a cylindrical reflector, forming at the entrance slit, an image of the light source which is substantially congruent with the curved entrance slit.
Abstract:
The disclosure relates to the technique, including systems and methods, for use in optical topographical and/or tomographic 3D imaging of a sample. The system may include (a) a lens unit, chromatically dispersive so that its focal length varies depending on a light wavelength, the lens unit being configured to pass therethrough polychromatic light arriving from and originated at a sample, while selectively collimating those spectral components of the polychromatic light which are in focus based on their wavelengths and origins; and (b) an etalon structure accommodated in an optical path of light being output from the lens unit to receive the collimated light, said etalon structure being configured to operate with multiple resonant wavelengths and to provide respective spectral transmittance peaks at said resonant wavelengths.
Abstract:
A device for performing Raman spectroscopy is disclosed. The device comprises a sensor device comprising a transparent substrate having first and second opposite faces. The sensor device comprises a light source, a first grating, a first reflective element, and a light detector carried by the first face of the substrate. The light source is arranged to emit light towards the second face of the substrate and the light detector is directed at the second face of the substrate. The first grating is interposed between the light source and the light detector. The first reflective element is interposed between the light source and the first grating. The sensor device comprises a second grating and a second reflective element carried by the second face of the substrate, the second grating arranged to receive light from the light source and the second reflective element arranged to receive light from the first grating. The sensor device comprises a light-filtering layer disposed in the substrate between the first and second faces. The device for performing Raman spectroscopy comprises a fluidic device coupled to the sensor device next to the second face of the sensor device. The fluidic device comprises an analyte binding site next to the second face of the substrate, a port and a channel between the port and the analyte binding site for directing a test sample from the port to the analyte binding site. The light filtering layer comprises a first pair of light blocking regions arranged to provide a first aperture in a first optical path between the first grating and the detector and a second pair of light blocking regions arranged to provide a second aperture in a second optical path between the second grating and the analyte binding site.