摘要:
An optical beam scanning device comprises optical beam scanning means for rotational polygonal mirror to deflect entering luminous flux and scan an object to be scanned with the luminous flux; pre-deflection optical system which shapes a luminous flux emitted from light source means to image the resultant luminous flux onto the optical beam scanning means; and imaging optical system which images the luminous flux from the optical beam scanning means onto the object to be scanned. In the optical beam scanning device, the imaging optical system comprises an imaging optical element that in the entire main scanning area for luminous flux from the optical beam scanning means, the central scanning position has a main scanning direction curvature different from that of the scanning position of the scanning end, and a scanning angle α0 [rad] at which the optical beam scanning means scans the object to be scanned with the luminous flux is defined by the following expression, α0≦π{(2/N)−(Vr/3)×10−7} wherein N indicates the number of surfaces of the rotational polygonal mirror and Vr [r.p.m.] indicates the revolution of the rotational polygonal mirror.
摘要:
According to a beam control device of the present invention, if an exposure device including a light emitting section is instructed to form an image and a predetermined current is then supplied to an application specific integrated circuit and a main control section, then the main control section outputs an light emitting section on signal. Then, the light emitting section outputs light having its intensity changed according to image information.
摘要:
An image forming apparatus having a photosensitive member, an exposure device having a laser emitting element that irradiates a laser beam, the laser beam being scanned on the photosensitive member line by line to form an electrostatic latent image on the photosensitive member, a developing device that supplies a developing agent to the electrostatic latent image to form a visible image, and a controller that controls the laser emitting element to irradiate the laser beam in a predetermined light amount. The controller further controls the laser emitting element to irradiate the laser beam in a reduced light amount every at least one line.
摘要:
An incident optical system introduces a plurality of laser beams to an optical deflector from within a scanning range, the width of the plurality of laser beams being larger than the width of a deflection surface of the optical deflector in a main scanning direction. Principal rays of the plurality of laser beams, separated by a predetermined angle, cross each other near the deflection surface in a main scanning cross-section. A scanning optical device satisfies the expression Δθ
摘要:
An imaging apparatus includes a laser to generate a single-mode laser beam of energy, a multichannel spatial light modulator (SLM) accepting a plurality of modulating signals, and a beam multiplier between the radiation source and the SLM. The multiplier accepts the beam and generates from that beam a plurality of beams directed onto the SLM. The beams from the beam multiplier illuminate the active region of the SLM such that the SLM generates a plurality of modulated beams modulated according to the modulating signals. An optical subsystem is located between the SLM and an imaging plane including at least one optical element focusing the modulated beams onto the plane on which recording medium is placed to permanently mark the recording medium in response to incidence of such imaging radiation. Each beam from the SLM is substantially single-mode such that the optical subsystem can be designed using diffraction-limited optics.
摘要:
An optical beam scanning device of the present invention is for having a light beam with the width in the main scanning direction wider than the width in the main scanning direction of the reflection surface of a deflector incident on the deflector, reflecting and polarizing a part thereof by the reflection surface of the deflector, and focusing the polarized light beam on a surface to be scanned by optical means including a transmission type optical member. Then, the polarization direction of the light beam incident on the deflector is substantially in the main scanning direction. According to an image forming apparatus comprising a plurality of light sources for forming a plurality of scanning lines with the light beams from a plurality of the light sources, the polarization direction of the light beams from the light sources at the time of being incident on the corresponding deflector is provided substantially in the main scanning direction.
摘要:
An object is to obtain a multi-beam optical scanning apparatus in which a displacement of an image location of each of light beams emitted from a plurality of light emitting portions is reduced, and which is suitably usable in a high-speed and high-image-quality application, and an image forming apparatus using the multi-beam optical scanning apparatus. A multi-beam optical scanning apparatus includes a light source unit 1 having plural light emitting portions disposed with being spaced from each other in a main-scanning direction, a first optical system 2 for changing conditions of plural divergent light beams emitted from the light source unit, a stop 3 for restricting widths of the plural light beams transmitted through the first optical system, a deflecting unit 5 for reflecting the plural light beams restricted by the stop, a second optical system 6 for forming images of the plural light beams reflected by the deflecting unit on a surface 7 to be scanned, and a detecting unit for detecting a writing start position synchronous signal for controlling a timing of a scanning start position on the surface to be scanned. The individual elements are designed so as to satisfy a predetermined condition.
摘要:
A light beam position detecting device detects the passage positions of a plurality of light beams for scanning the surface of a photosensitive drum. The light beam position detecting device has a sensor pattern for generating an output which is continuously changed in a wide range with a variation in the passage position of the light beam in a sub-scanning direction perpendicular to a main scanning direction of the light beam. The sensor pattern precisely detects the relative scanning position of the light beam in a wide range. The passage positions of the plurality of light beams for scanning the surface of the photosensitive drum are controlled to a preset position based on the output of the sensor pattern.
摘要:
A tandem-type laser scanning apparatus has a deflector for deflecting a first laser beam and a second laser beam, which fulfill prescribed conditions, in the main scanning direction by reflecting the laser beams simultaneously with a single surface and a scanning optical system for directing the deflected first and second laser beams to separate scanned surfaces corresponding thereto in such a way that the scanned surfaces are individually scanned with the laser beams focused thereon. The scanning optical system includes a common lens that has no curvature in the sub scanning direction and that transmits both the first and second laser beams, a first scanning lens that transmits, of the first and second laser beams transmitted through the common lens, the first laser beam but not the second laser beam, and a second scanning lens that transmits, of the first and second laser beams transmitted through the common lens, the second laser beam but not the first laser beam. The first and second scanning lenses each have a surface having a different twist from each other.
摘要:
An optical scanning lens used in a multi-beam scanning optical apparatus including a first mechanism reforming the light beams into line images, a deflecting mechanism reforming the light beams into multiple scanning beams, and a second mechanism reforming the multiple scanning beams into scanning light spots running on a recording surface. The optical scanning lens has a refractive index profile and is included in the second optical mechanism, and satisfies a formula (m−1)×PLs×V/WLs≦2.3×10−6, where m is a number of light emission points, PLs is a pitch of the multiple beams, V represents the refractive index profile, W [mm] represents an effective recording width of the recording surface, and WLs represents an effective range of the optical scanning lens in the sub-scanning direction corresponding to the effective recording width W. An optical scanning apparatus or image forming apparatus may use the optical scanning apparatus.