Abstract:
The projection zoom lens essentially consists of a positive first lens group fixed while changing magnification and the second lens group through the fourth lens group which move while changing magnification, and a fifth lens group fixed while changing magnification; and an aperture stop positioned between adjacent moving lens groups or within one moving lens group, whereinthe numerical number of the zoom lens is set to be constant over the entire zoom range,the reduction side is configured to be telecentric, andthe projection zoom lens satisfies conditional formulas (4) and (5): 2.0
Abstract:
A projection lens system includes a first lens group including a 1a-th lens group having a negative refractive power, a 1b-th lens group having a positive or negative refractive power, and a 1c-th lens group having a positive or negative refractive power. During a zoom, the first lens group remains stationary on an optical axis. During a focus from a remote distance side to a close distance side, the 1a-th lens group remains stationary on the optical axis while the 1b-th and 1c-th lens groups move toward the enlargement conjugate side along different loci respectively. Conditional formula −4.7
Abstract:
An optical system includes a reflective optical system on a magnification side along an optical path of the projection optical system and a refractive optical system on a reduction side along the optical path. The reflective optical system includes one reflective optical element having a power. The refractive optical system includes a front group on the magnification side and a rear group on the reduction side. The front group having, in order from the magnification side toward the reduction side, a first lens group with a positive or negative refractive power, a second lens group, and a third lens group with a positive refractive power. The rear group has a positive refractive power. The first lens group moves to the magnification side, and the second lens group and the third lens group move to the reduction side in a change in focus from a long distance to a short distance.
Abstract:
A zoom lens consists of, in order from the object-side, a first lens-group having positive refractive power, and which is fixed during magnification change, a second lens-group having negative refractive power, and which moves during magnification change, a third lens-group having positive refractive power, and which is fixed during magnification change, a fourth lens-group having positive refractive power, and which moves during magnification change, and a fifth lens-group having negative refractive power, and which moves during magnification change. The first lens-group consists of, in order from the object-side, a front group having negative refractive power, a reflection member that bends an optical path and a rear group having positive refractive power. The fourth lens-group includes at least a cemented lens of a positive lens and a negative lens, and the following conditional expression (1) is satisfied: 0.8
Abstract:
A variable magnification optical system includes, in order from the object side: a positive first lens group, which is fixed when changing magnification; a negative second lens group that moves from the object side to the image side when changing magnification from the wide angle end to the telephoto end; and a rearward lens group having a positive refractive power throughout the entire variable magnification range that includes at least one lens group that moves when changing magnification. The first lens group includes, in order from the object side, a positive first lens group front group, a positive first lens group middle group, and a first lens group rear group constituted by a negative lens. The first lens group front group and first lens group middle group include cemented lenses formed by cementing a negative lens and a positive lens, provided in this order from the object side, together.
Abstract:
A variable magnification optical system includes, in order from the object side: a positive first lens group; a negative second lens group; a positive third lens group; a negative fourth lens group; and a positive fifth lens group. When changing magnification from the wide angle end to the telephoto end, the first and third lens groups are fixed with respect to an image formation plane, the second lens group moves toward the image side, the fourth lens group moves, and the distance between the fourth and fifth lens groups changes. A rearward lens group constituted by the third, fourth, and fifth lens groups has a positive refractive power throughout the variable magnification range. The transverse magnification ratio of the fourth lens group when focused on an object at infinity is negative throughout the variable magnification range.
Abstract:
A projection zoom lens constituted by: a negative first lens group; a positive final lens group; and moving lens groups between the first and the final lens groups that move independently while changing magnification, satisfies the conditional formulae below: 1.00
Abstract:
A zoom lens arranged along an optical axis includes a first lens group and a second lens group. The second lens group has at least one aspheric lens. The first lens group moves toward an image side and the second lens group moves away from the image side along the optical axis during zooming. The first lens group is moved for focusing, and the second lens group is moved for zooming.
Abstract:
A zoom lens system includes: a first lens group having a negative refractive power; a second lens group having a positive refractive power; and an aperture between the first and second lens groups, wherein the first lens group and the second lens group are sequentially arranged from an object side to an image side, wherein the zoom lens system performs zooming and focusing by moving the second and first lens groups, respectively, along an optical axis, and satisfies a conditional expression below: 2.5
Abstract:
A zoom lens includes a first lens unit having a negative refractive power, a second lens unit having a positive refractive power, and a third lens unit having a negative refractive power. At the time of zooming, distances between the lens units change, and a distance between the first lens unit and the second lens unit at a telephoto end is shorter than at a wide angle end. An aperture stop is disposed on the image side of an image-side surface of the first lens unit, and on the object side of an image-side surface of the second lens unit. The second lens unit includes two sub lens units. The object-side sub lens unit in the second lens unit includes one lens component. The following conditional expressions are satisfied. 3.0