Abstract:
An off-axis three-mirror optical system with freeform surfaces comprised an aperture, a primary mirror, a secondary mirror, a tertiary mirror, and a detector. The aperture is located on an incident light path. The primary mirror is located on an aperture side. The secondary mirror is located on a primary mirror reflected light path. The tertiary mirror is located on a secondary mirror reflected light path. The detector located on a tertiary mirror reflected light path. The primary mirror and the tertiary mirror have a same fifth-order polynomial freeform surface expression. The primary mirror reflected light path, the secondary mirror reflected light path and the tertiary mirror reflected light path overlap with each other.
Abstract:
Device for detecting the position of at least a first and a second hand of an electromechanical watch, said first and second hands moving above a dial, the detection device including a single light source emitting a light beam towards the first and second hands, and a first and a second light detection system, the light source and the first and second light detection systems being mounted on or underneath the dial, the light source and the first and second light detection systems being arranged so that, in a determined position of the first hand, the light beam emitted by the light source is reflected by the first hand towards the first detection system, and in a determined position of the second hand, the light beam emitted by the light source is reflected by the second hand towards the second detection system.
Abstract:
Lighting devices and methods for illuminating the interior of a building with natural daylight are disclosed. In some embodiments, a daylighting apparatus includes a tube having a sidewall with a reflective interior surface, an at least partially transparent light collector with one or more light turning elements, and a light reflector positioned to reflect daylight into the light collector. The one or more light turning elements can turn direct and indirect daylight into the tube so that it is available to illuminate the building. In some embodiments, the tube is disposed between the light collector and a diffuser positioned inside a target area of a building. In certain embodiments, the tube is configured to direct at least a portion of the daylight transmitted through the light collector towards the diffuser.
Abstract:
A multiple field-of-view telescope and optical sensor system and imaging methods using the system. In one example, an optical sensor system includes a primary imaging detector having a first field of view, a telescope configured to receive and focus electromagnetic radiation onto the primary imaging detector along a primary optical axis, a secondary detector having a second field of view different from the first field of view, and relay optics configured to direct and focus a portion of the electromagnetic radiation onto the secondary detector. In certain examples, the system further includes a fold mirror positioned to reflect the portion of the electromagnetic radiation to the relay optics.
Abstract:
Disclosed is a window blind solar energy management system for capturing solar energy to manage illumination and temperature within a defined space. Blinds comprising curved louvers are hung from the internal frame of a window, each louver having a concave, highly reflecting specular mirrored surface that focuses incoming solar beam radiation onto a thin area on the back of the adjacent louver. The angle of the louvers is adjusted by an integral automatic controller so that the thin strip of light can be focused on one or two of three regions on the back of the adjacent louver which are designed to either reflect, absorb, or reject the incoming light.
Abstract:
A reflective color display pixel has a top surface for receiving ambient light, and a plurality of sub-pixels including a first sub-pixel. The first sub-pixel has a broadband mirror and a luminescent layer disposed over the broadband mirror. The luminescent layer contains a luminescent material for absorbing a portion of the ambient light and emitting light of a first color, and a light-absorbing material for absorbing light of wavelengths longer than a wavelength of the first color.
Abstract:
The invention relates to a double telecentric optical system (100) and its use in a sensor device (1000), wherein said optical system (100) comprises a single focusing element, for example a lens (101). A mirror element (102) is arranged at the focal point (F) of this focusing element (101) to reflect incoming light rays back to the focusing element (101). Incoming and reflected light rays preferably pass through different parts (101a, 101b) of the focusing element (101), allowing a spatially separated arrangement of an object (3) and its image (I).
Abstract:
The invention relates to a mirror arrangement for guiding a laser beam in a laser system having at least one first end mirror and one second end mirror, wherein said end mirrors define a resonator having an optical resonator axis, wherein the laser beam is guided into the resonator as an input laser beam and is guided out of the resonator again after multiple reflection at the first and second end mirrors as an output laser beam. The sequence of reflections at the first and second end mirror thereby determines a direction of rotation between the first and second end mirror, defined as an axis of rotation relative to the resonator axis, whereby a first beam path is defined and the laser beam circulates in a direction of rotation between the first and second end mirrors in the resonator defined as an axis of rotation relative to the resonator axis. The resonator is designed such that the direction of rotation is reversed at a reversing point and the laser beam in the resonator passes through at least partially in a direction of rotation opposite to the first beam path, whereby a second beam path is defined.
Abstract:
The present invention provides a heat emitting body including a) a transparent substrate, and b) a conductive heat emitting pattern having a boundary line shape of figures forming a Voronoi diagram and an intersection point part of boundary lines, at which two or more boundary lines meet each other, forming a curve on at least one side of the transparent substrate, and a method for manufacturing the same.
Abstract:
An exterior mirror reflective element for a vehicular exterior rearview mirror assembly includes a front glass substrate having a transparent conductive coating established at a second surface thereof and a rear glass substrate having a metallic reflector coating established at a third surface thereof, with an electro-optic medium disposed between the second surface of the front glass substrate and the third surface of the rear glass substrate. An electrically conductive clip is disposed along and bridges a perimeter edge of the rear glass substrate to establish electrically conductive connection to the metallic reflector coating at the third surface of the rear glass substrate. A solder joint is established at the electrically conductive clip, and the solder is decoupled from the metallic reflector coating at the third surface of the rear glass substrate.