Abstract:
A LnBaCuO-series superconducting thin film is provided over a surface of a substrate of Y.sub.2 O.sub.3 single crystal to form a composite superconductor. Ln stands for Y or a lanthanoid element. The composite superconductor has an improved interfacial diffusion.
Abstract:
A method of growing a single crystal of KTiOPO.sub.4 which is a nonlinear optical material is disclosed. Growth of the single crystal of KTiOPO.sub.4 is carried out by melting a KTiOPO.sub.4 material with a flux to produce a melt, then contacting a seed crystal to the melt, and by slowly cooling at a saturation temperature or below. At this time, molar fractions of K.sub.2 O, P.sub.2 O.sub.5 and TiO.sub.2 contained in the melt fall within a region surrounded by six point in a K.sub.2 O-P.sub.2 O.sub.5 -TiO.sub.2 ternary phase diagram of A (K.sub.2 O:0.4150, P.sub.2 O.sub.5 :0.3906, TiO.sub.2 : 0.1944), B (K.sub.2 O:0.3750, P.sub.2 O.sub.5 : 0.3565, TiO.sub.2 : 0.2685), C (K.sub.2 O: 0.3750, P.sub.2 O.sub.5 : 0.3438, TiO.sub.2 : 0.2813), D (K.sub.2 O: 0.3850, P.sub.2 O.sub.5 : 0.3260, TiO.sub.2 : 0.2890), E (K.sub.2 O: 0.4000, P.sub.2 O.sub.5 : 0.3344, TiO.sub.2 : 0.2656), and F (K.sub.2 O: 0.4158, P.sub.2 O.sub.5 : 0.3744, TiO.sub.2 : 0.2098). In addition, K.sub.15 P.sub.13 O.sub.40 or the same composition produced by melting is used as the flux, and the proportion of a KTiOPO.sub.4 element in a composition of the melt is prescribed to 83.5 to 90.0 mol %. The seed crystal is set so that a C axis is in a direction perpendicular to a melt surface. Then, the seed crystal contacted to the melt is rotated and slowly cooled. Thus, a single crystal of KTiOPO.sub.4 of single domain at the end of growth can be produced.
Abstract translation:公开了一种生长作为非线性光学材料的KTiOPO4单晶的方法。 通过用助熔剂熔化KTiOPO 4材料以产生熔体,然后使晶种接触熔体,并通过在饱和温度或更低温度下缓慢冷却来进行KTiOPO4单晶的生长。 此时,K2O,P2O5和TiO 2的摩尔分数在A(K2O:0.4150,P2O5:0.3906,TiO 2:0.1944),K 2 O 3的K 2 O 5 - (K2O:0.3750,P2O5:0.3565,TiO2:0.2685),C(K2O:0.3750,P2O5:0.3438,TiO2:0.2813),D(K2O:0.3850,P2O5:0.3260,TiO2:0.2890),E(K2O: P 2 O 5:0.3344,TiO 2:0.2656)和F(K 2 O:0.4158,P 2 O 5:0.3744,TiO 2:0.2098)。 此外,将K15P13O40或通过熔融制造的相同组成用作助熔剂,并且将熔体组成中的KTiOPO 4元素的比例规定为83.5〜90.0mol%。 晶种被设定为使得C轴在垂直于熔体表面的方向上。 然后,将与熔体接触的晶种旋转并缓慢冷却。 因此,可以生产在生长结束时单畴KTiOPO4的单晶。
Abstract:
A method of substantially aligning the superconducting grains of a multi-grained perovskite defect oxide type material, which material includes at least one superconducting phase. In the superconducting phase of such perovskite materials, the unit cells thereof include a plurality of substantially parallel metal oxide planes spacedly disposed along the c axis thereof. The aforementioned alignment of discrete grains of the multi-grained superconducting material occurs along the c axis.
Abstract:
Doped crystalline compositions (e.g., single domain crystals) of MTiOAsO.sub.4 (wherein M is K, Rb and/or Cs) are disclosed which contain at least about 10 ppm total of Fe, Sc and/or In dopant. Also disclosed is a flux process which is characterized by adding said dopant to a melt containing the components for forming MTiOAsO.sub.4, in an amount effective to provide a doped single domain crystal of MTiOAsO.sub.4 containing at least 10 ppm of said dopant.
Abstract:
A sol-gel process is disclosed for preparing MTiOXO.sub.4 when M is K, Rb, Tl and/or NH.sub.4 and X is P and/or As which involves dissolving suitable compounds of M, Ti and X in stoichiometic amounts in a suitable organic liquid, and then producing crystalline MTiOXO.sub.4 using procedures including hydrolysis, condensation, solidification and pyrolysis. Bulk material and films (e.g., films of KTP on a single crystal silicon substrate) may be produced. Compositions comprising films of said MTiOXO.sub.4 produced by this process are disclosed.
Abstract:
A method of manufacturing a component of the tape or filament kind out of a material based on a superconducting oxide having a high critical temperature, wherein said material is formed while it is in the vitreous state,the method being characterized by the fact that the material is subsequently crystallized:in a first step under a magnetic field and at a temperature T.sub.l lying between the vitreous transition temperature T.sub.g and the crystallization temperature T.sub.x, during which step isolated microcrystallites of submicroscopic size develop and their c axes orient themselves parallel to one another because of said applied magnetic field; andin a second step at a temperature T.sub.2 close to the crystallization temperature, in which the existing nuclei grow while retaining the texture imparted to them during said first step.
Abstract translation:一种基于具有高临界温度的超导氧化物的材料制造带或丝的部件的方法,其中所述材料在玻璃状态下形成,该方法的特征在于材料 随后在第一步中在磁场和位于玻璃态转变温度Tg和结晶温度Tx之间的温度T1下结晶,在此步骤中分离出亚微米尺寸的微晶,其+ E,rar / c /轴定向 由于所述施加的磁场,它们彼此平行; 并且在接近结晶温度的温度T2的第二步骤中,其中现有核生长同时保持在所述第一步骤期间赋予它们的纹理。
Abstract:
Improvement in a method for preparing a superconducting thin film of compound oxide on a substrate (6) by laser evaporation technique. A rear surface of a target (7) used is cooled forcedly by a cooling system (9) during film formation.
Abstract:
A process of preparing a yttrium based superconductor including partial melting a body of YBa.sub.2 Cu.sub.3 O.sub.y compound which is stacked on a Y.sub.2 BaCuO.sub.5 plate, to produce a liquid phase, BaCu.sub.2.CuO which flows down into the Y.sub.2 BaCuO.sub.5 plate, a peritectic reaction of the Y.sub.2 BaCuO.sub.5 of the plate, with the liquid phase, BaCuO.sub.2.CuO, to form a YBa.sub.2 Cu.sub.3 O.sub.y phase, and cooling and annealing the resulting YBa.sub.2 Cu.sub.3 O.sub.y to gain superconducting properties, in which weak-links are reduced by the well oriented-grains with few voids, and the grains of the fine grained Y.sub.2 BaCuO.sub.5 phase act as flux pinning centers, which increases the critical current density.
Abstract:
A process for preparing a single crystal thin film made of oxide superconductor of Bi, Sr, Ca, and Cu on a substrate by a sputtering method using a target made of a sintered oxide of Bi, Sr, Ca, and Cu and having its c-axis oriented in parallel with the surface of the substrate.The sputtering is effected by 90.degree. off-axis magnetron sputtering at a substrate temperature between 500.degree. C. and 750.degree. C. at a gas pressure between 0.001 Torr and 1 Torr.
Abstract:
A method makes a superconducting oxide thin film by irradiating an oxygen radical beam with necessary elements of the compound onto a substrate mounted in a molecular beam epitaxy system. The process can selectively form the superconducting oxide thin film on the substrate more efficiently in a direct reaction manner while maintaining the vacuum chamber of the molecular beam epitaxy system at a higher vacuum level.