Abstract:
A vehicle air conditioner has an actuator for driving an air mixing door and various mode switching doors. An automatic range and a manual range are set in different operating angle ranges of the actuator. In the automatic range, an air outlet mode is automatically switched in accordance with an opening degree of the air mixing door. On the other hand, in the manual range, a multi-mode or a defroster mode is manually set, regardless of the opening degree of the air mixing door. In the manual range, air is simultaneously blown from all openings such as a face opening, a foot opening and a defroster opening in the multi-mode, and air is blown from the defroster opening in the defroster mode.
Abstract:
The air heating capability of an indoor heat exchanger is limited to set the temperature of the indoor heat exchanger to a first predetermined temperature Tel or lower during heating. Thereby, fogging is prevented through re-evaporation of the condensed water in the indoor heat exchanger during heating within an air-conditioning apparatus with a hot water heater core using hot water as the heat source and the heating circuit.
Abstract:
The invention relates to a serpentine heat exchanger having a first serpentine tube block (12a) comprising one or more adjacent first serpentine tube sections with parallel through-flow and a second serpentine tube block (12b) disposed behind the first and comprising one or more adjacent second serpentine tube sections with parallel through-flow. According to the invention, at least one of the second serpentine tube sections is connected in series for flow purposes via a diversion section (10, 11) to a first serpentine tube section lying adjacent thereto.
Abstract:
A defroster/face cool air passage for introducing cooled air from an evaporator to a defroster opening portion and a face opening portion by bypassing a heater core, and a foot cool air passage for introducing cooled air from the evaporator to a foot opening portion by bypassing a heater core, are formed independently from each other. The foot cool air passage is located at sides of the heater core in a vehicle right-and-left direction. The cooled air from the foot cool air passage is mixed with warmed air having passed through the heater core at an inlet of the foot opening portion. Accordingly, pressure loss at a foot mode in an air conditioning unit with a central installation layout is reduced, and a mounting performance on a central portion of a vehicle instrument panel is improved.
Abstract:
An air conditioning apparatus for an automotive vehicle includes a heater core and a mix door assembly installed in a case. The mix door assembly is detachably installed in the case through an opening formed at a side wall of the case. The mix door assembly constitutes a housing, a mix door and a slide mechanism. The slide mechanism is arranged to slide the mix door according to a received rotational force so as to vary the ratio of warm air to quantity and cool air quantity.
Abstract:
A container for transporting a load in conditioned space air, where the container includes a number of walls defining a closed conditioned space with an ambient air intake opening and a conditioned space air exhaust opening provided on one of the container walls; a temperature control system for controlling the temperature of the conditioned space air; an ambient air exchange so system having a door movable relative to the exhaust and intake openings to thereby change the rate that conditioned space air is exchanged with ambient air, and a motor for repositioning the ambient air exchange door. The container also including a container controller in signal transmitting relation with the air exchange door repositioning motor. The controller sends signals to the repositioning motor to move the ambient air exchange door to a position which produces the required ambient air exchange rate to preserve the load.
Abstract:
In a vehicle air conditioner, each of cool air outlets is provided at an upper side of each seat at second and third seat lines from a most front seat so that cool air from an air conditioning unit is blown from the cool air outlets toward upper sides of the seats, respectively, and each of warm air outlets is provided at a lower side of each seat at the second and third seat lines so that warm air from the air conditioning unit is blown from the warm air outlets toward lower sides of the seats, respectively. In addition, each of suction ports is provided for each corresponding seat at the second and third seat lines so that air inside a passenger compartment is sucked from the suction ports to be returned to the air conditioning unit.
Abstract:
A two-way hingeless ventilator for ventilating an enclosure through a wall thereof has a frame defining an opening therethrough. A closure member is disposed against an outer side of the frame and is alternately swingable relative to the frame between open and closed positions at opposite sides of the opening. A tensioning rod is fixed on the frame and extends between opposite sides of the opening. An actuating member extends from an inner side of the closure member through the opening and intermediate ends of the tensioning rod. A positioning slot is defined in the actuating member through which the tensioning rod passes in a tensioned condition to apply a closing force to the closure member. The positioning slot has a central position defining a closed position of the cover member and at least one opposite side slot extending away from the central position. The closure member is variably movable from the closed position to an open position by rotation or pivoting of the actuating member which causes the tensioning rod to variably engage along the side slot in its tensioned condition.
Abstract:
An actuator for car air duct damper which allows a precise control on the flow of the air. The actuator invention includes a rotary wheel (30) provided on and coaxial to the rotation shaft (54) of the damper (53), said rotary wheel being formed with a plurality of holes (33) along its circumference at a predetermined interval, optical sensors (40) disposed at the both side of the rotary wheel (30) closely so as to correspond to the holes (33), said optical sensors detecting the passage of the light through the holes (33), and a control section connected respectively to the optical sensors (40 ) and input button (63) in the indoor space of a car for controlling the driving motor (10) in accordance with respective input signals.
Abstract:
A motor vehicle having a load-carrying post intended to support the roof structure of the motor vehicle. The motor vehicle (17) has a passenger compartment and an air-conditioning system intended to supply ventilation air to said passenger compartment via air ducts. The load-carrying post (1,31) accommodates at least one air duct (4,24), to which the air-conditioning system is connected, and includes at least one air-vent connection (7,27) which is arranged as to allow the ventilation air (6,26) to be directed in a first direction (9,29) essentially counter to the intended main direction of travel of said motor vehicle (17). The invention finds its main application when the aim is to achieve more flexible regulation of the ventilation air supplied in the region around what is known as the B-post, but also in order to avoid small children secured in child car-seats in the front or rear passenger space being exposed to unnecessary drafts.