Abstract:
A heat exchanger includes a tubular refrigerant distributor having insertion holes spaced from each other in a first direction and into which ends of heat transfer tubes are inserted in a second direction. A first partition plate partitions the refrigerant distributor into a first space into which the ends of the heat transfer tubes are inserted and a second space, larger than the first space, into which the ends of the heat transfer tubes are not inserted; and an inflow pipe provided on a one side-surface side of the refrigerant distributor. The heat transfer tubes are located apart from the first partition plate in the first space. The first partition plate is provided with an orifice that is provided at a location corresponding to a space between adjacent ones of the heat transfer tubes, and that causes the first space and the second space to communicate with each other.
Abstract:
A heat exchanger includes a header, a tank and a gasket between the header and the tank. The gasket at least includes one portion protruding from the header, which is in sealing engagement with a portion of the tank. In some embodiments, the portion protruding from the header may include a V-shaped or U-shaped groove that is open to the portion of the tank.
Abstract:
A heat exchanger (1) for a motor vehicle includes a plurality of tubes (2) arranged in a first and a second row (3A, 3B); a first and a second header tank (4, 5) inside which tanks (4, 5) the tubes (2) of each of the rows (3A, 3B) emerge; and a longitudinal dividing partition (16) arranged in the first header tank (4) to divide the first header tank (4) longitudinally into refrigerant inlet and outlet compartments (17, 18) into which the tubes (2) of the first row (3A) and of the second row (3B) emerge. The longitudinal dividing partition (16) includes a plurality of transverse dividing partitions (27) arranged in the second header tank (5) to divide the second header tank (5) transversely into a plurality of return compartments (28) into which at least one tube (2) of each of the rows (3A, 3B) emerges.
Abstract:
In a heat exchanger, a plate member of a tank portion includes a first fluid communication passage through which a first tank space communicates with first tubes, and a second fluid communication passage through which a second tank space communicates with second tubes. Either an upstream first tube group of the first tubes or a downstream first tube group of the first tubes, whichever is larger in a pressure loss of the first fluid, configures a higher pressure loss first tube group, and the other first tube group smaller in the pressure loss of the first fluid configures a lower pressure loss first tube group. A flow channel resistance between the higher pressure loss first tube group and the first tank space is smaller than a flow channel resistance between the lower pressure loss first tube group and the first tank space.
Abstract:
A heat exchanger for an aircraft includes a hot fluid inlet, a hot fluid outlet, a cold fluid inlet, a cold fluid outlet, and a header connected to the hot fluid outlet. The header includes a housing defining a header volume and a baffle separating the header volume into a first volume and a second volume, wherein the first volume and the second volume are in fluid communication with each other.
Abstract:
A multiple bank, flattened tube heat exchange unit includes a first tube bank including a plurality of flattened tube segments extending longitudinally in spaced parallel relationship between a first manifold and a second manifold and a second tube bank including a plurality of flattened tube segments extending longitudinally in spaced parallel relationship between a first manifold and a second manifold, the second tube bank disposed behind the first tube bank. The second manifold of the first tube bank and the second manifold of the second tube bank form a manifold assembly wherein an interior volume of the second manifold of the first tube bank and an interior volume of the second manifold of the second tube bank of the manifold assembly are internally connected in fluid communication.
Abstract:
A heat exchanger for use with a two-phase refrigerant includes an inlet header, an outlet header, and a plurality of refrigerant tubes hydraulically connecting the headers. A distributor tube has a plurality of orifices disposed in the inlet header, the end of the refrigerant tubes opposite the outlet header extends inside the inlet header and abuts a surface of the distributor tube, a portion of an inner surface of the inlet header facing the surface of the distributor tube and the surface of the distributor tube defining a first chamber. A gap separates at least a portion of the distributor tube and the inlet header, the gap extending from at least the orifices to the first chamber, wherein at least one partition having at least one opening formed therethrough spanning the gap, the partition separating the orifices from the first chamber.
Abstract:
An evaporator includes a refrigerant inlet header section having a refrigerant inlet at a first end portion thereof and plural heat exchange tubes disposed at predetermined intervals in the longitudinal direction of the refrigerant inlet header section and connected at respective first end portions thereof to the refrigerant inlet header section. A flow-dividing control wall divides the refrigerant inlet header section interior into an upper space, into which a refrigerant flows through the refrigerant inlet, and a lower space, with which the heat exchange tubes communicate. A communication hole in the flow-dividing control wall at an end portion opposite the first end portion establishes communication between the spaces therethrough. A flow-division-adjusting hole communicating with the lower space formed at the first end portion of the refrigerant inlet header section allows the refrigerant to flow into the lower space therethrough without passing through the upper space.
Abstract:
An evaporator including a heat exchange core of tube groups in plural parallel rows in a front-rear direction, each including plural heat exchange tubes in a left-right direction at a spacing, and a tank at the heat exchange core lower end and having headers in the front-rear direction. The heat exchange tubes are joined to the headers, while inserted through respective tube insertion holes in a top wall of the header. Adjacent headers connect to each other by a connector providing a drain gutter with front, rear opposite side faces extending respectively forwardly, rearwardly away from each other as the side faces extend upward. Each insertion hole has one end adjacent to the connector positioned in the drain gutter side face and each heat exchange tube has a side end adjacent to the connector positioned in the drain gutter. The connector has drain holes extending therethrough.
Abstract:
The invention relates to a heat exchanger, especially a gas cooler for CO2, embodied as a cooling agent. The heat exchanger comprises at least one two-part collector unit made of a base and a cover. Said collector unit consists of flat pipes and at least two longitudinal channels with an essentially circular cross-section. The ends of the flat pipes and the base comprise openings for receiving the ends of the pipes. The base, cover and flat pipes are soldered together.