Abstract:
A joint detection-decoding receiver using a multistage parallel interference canceller for selectively estimating a partial codeword corresponding to a state transition (branch) is disclosed. The JDD receiver of the DS-CDMA system includes a PIC that employs a state sequence to selectively carry out a symbol estimation of a partial codeword corresponding to the branch so as to reduce complexity and a calculation load as well as maintaining a high performance of the receiver according to the joint detection-decoding.
Abstract:
A method for double weighting parallel interference cancellation in CDMA mobile communication system, integrates ideas of both partial weighting method and weighting method based on Bayes rule. When making a decision on each symbol of the user, calculating reliability coefficient of a decision result on the symbol of the user according to the weighting algorithm based on Bayes rule; weighting regenerated signal of the symbol of the user with the reliability coefficient. During process of MAI estimating and removing, obtaining the MAI on the expected user from weighted regenerated signal of other users in chip level; and then setting a weight value, weighting the MAI with the weight value. Finally, removing weighted MAI from received signal, which means partially removing MAI produced by other users on the expected user. At the same time, the present invention also discloses a double weighting PIC method with simplified algorithm, which transfers weighting in chip level to weighting in symbol level, replacing a Hyperbolic tangent decision with a piecewise linear decision method or a look-up table method.
Abstract:
This invention provide parallel interference cancellation for wireless communication base stations. Received user inputs symbols are spread by means of pseudo-noise sequences to form user input chip vectors. These are added together and interpreted to form chip vectors of interference samples. These chip vectores are despread to form interference output symbols by pseudo-noise sequences. The interference output signals are subtracted from the received user input symbols to obtain a first estimate of transmitted symbols. This process may be continued for two or more iterations to obtain better interference cancellation.
Abstract:
Disclosed is a hybrid multi-user interference cancellation method for canceling interference between a plurality of user signals, which comprises: receiving a plurality of external user signals, calculating powers of the user signals, and numbering the calculated signal powers in their intensity orders; sorting the user numbers in descending order; forming at least one user cluster so that the signal powers following the sorted user numbers may differ less from a central value or a mean value in the same cluster; and performing parallel interference cancellation on the respective user signals within the same cluster, and performing successive interference cancellation between the formed clusters.
Abstract:
The invention provides methods and apparatus for multiple user detection (MUD) processing that have application, for example, in improving the capacity CDMA and other wireless base stations. One aspect of the invention provides a multiprocessor, multiuser detection system for detecting user transmitted symbols in CDMA short-code spectrum waveforms. A first processing element generates a matrix (hereinafter, “gamma matrix”) that represents a correlation between a short-code associated with one user and those associated with one or more other users. A set of second processing elements generates, e.g., from the gamma matrix, a matrix (hereinafter, “R-matrix”) that represents cross-correlations among user waveforms based on their amplitudes and time lags. A third processing element produces estimates of the user transmitted symbols as a function of the R-matrix.
Abstract:
A multiuser interference elimination apparatus in which, even in the second and other subsequent stages, adaptive updating of antenna weights can be performed and antenna weights can be generated with accuracy by using interference-canceled received signals. A multiplier performs gain correction by multiplying a symbol replica transmitted from the preceding stage by a coefficient [1−(1−α)m−1], and an antenna signal regeneration section converts the gain-corrected symbol replica into antenna signals. Adders add the antenna signals converted by the antenna signal regeneration section to outputs from despread devices and output the addition results to an antenna weight adaptive updating section. The antenna weight adaptive updating section performs adaptive updating of antenna weights by using the addition results.
Abstract:
In a receptive system of a base station according to the communication system of a PDMA, CDMA and the like, the reception signals from a plurality of users received on a plurality of antennas are frequency-converted by a frequency conversion circuit, and then converted into digital signals by an A/D converter to be applied to a DSP. The signal of a particular user is extracted from the input signal by an adaptive array. Also, the interference user signal component is removed by an interference canceller. Accordingly, the signal component of a desired user having the interference component caused by an unrequired user signal suppressed is output. Thus, the communication quality in a radio communication system such as a mobile communication system can be improved.
Abstract:
A method employed by a remote unit wherein a plurality of channels are received as a received signal. Each channel is associated with a code. For each of the plurality of channels, others of the plurality of channels are subtracted from the received signal and a result of that subtracting is despread as data for that channel.
Abstract:
The invention provides improved CDMA, WCDMA (UTMS) or other spread spectrum communication systems of the type that processes one or more spread-spectrum waveforms, each representative of a waveform received from a respective user (or other transmitting device). The improvement is characterized by a first logic element that generates a residual composite spread-spectrum waveform as a function of an arithmetic difference between a composite spread-spectrum waveform for all users (or other transmitters) and an estimated spread-spectrum waveform for each user. It is further characterized by one or more second logic elements that generate, for at least a selected user (or other transmitter), a refined spread-spectrum waveform as a function of a sum of the residual composite spread-spectrum waveform and the estimated spread-spectrum waveform for that user.
Abstract:
A method for reducing multiple access interference (MAI) in a code division multiple access (CDMA) spread spectrum receiver assigned a number of codes which also despreads the received signal with the remaining codes of the same spreading factor. For forward link transmission with orthogonal codes, as in 3GPP and 3GPP2, interferers using larger spreading factors than the one used by the referenced mobile will have codes that are formed from the orthogonal codes of the same spreading factor as the multicodes corresponding to the referenced mobile. As a consequence, in a multipath environment, the output of a despreader using any of these remaining orthogonal codes will provide an estimate of the composite interference attributed to signals, if any, using codes that partly comprise the corresponding orthogonal code. No decisions are made for the previous despreader's output because it corresponds to a sum of interferers with unknown powers. However, this soft output can be re-spread and subtracted from the received signal prior to despreading, thereby removing the corresponding composite interference. This can significantly improve the performance of a receiver performing interference cancellation of both assigned and interfering signals, especially when the interfering signals have a substantial total power.