-
公开(公告)号:US20240020344A1
公开(公告)日:2024-01-18
申请号:US18478423
申请日:2023-09-29
发明人: Satyapal P. Reddy , Jeroen Mattijs Van Rotterdam , Michael T. Mohen , Muthukumarappa Jayakumar , Ravikumar Meenakshisundaram
IPC分类号: G06F16/93 , G06F8/20 , G06F16/83 , G06F16/28 , G06F40/186 , G06Q10/067 , G06F16/22 , G06F16/2453
CPC分类号: G06F16/93 , G06F8/24 , G06F16/83 , G06F16/282 , G06F40/186 , G06Q10/067 , G06F16/2228 , G06F16/2453 , G06F16/2264
摘要: Case management systems and techniques are disclosed. In various embodiments, for each of a plurality of case nodes comprising a case model a trait definition comprising a corresponding set of traits associated with that case node is received. The respective trait definitions are used to bind each set of traits to the case node with which the set of traits is associated in case instances created based on the case model.
-
公开(公告)号:US20240012858A1
公开(公告)日:2024-01-11
申请号:US17862038
申请日:2022-07-11
申请人: Hitachi, Ltd.
发明人: Kazuhide AIKOH
IPC分类号: G06F16/906 , G06F16/25 , G06F16/22
CPC分类号: G06F16/906 , G06F16/254 , G06F16/2264
摘要: A method for determining metadata propagation generated by an Extract, Transfer, Load (ETL) process. The method may include categorizing metadata given to data sources to generalize the metadata and categorizing the ETL process to generalize the ETL process; defining propagation rules for the generalized metadata and generalized ETL process; and generating metadata for ETL-converted data based on the categorization of the generalized metadata and generalized ETL process, and corresponding ones of the propagation rules.
-
公开(公告)号:US11861418B2
公开(公告)日:2024-01-02
申请号:US18155529
申请日:2023-01-17
发明人: Austin Walters , Jeremy Goodsitt , Anh Truong , Reza Farivar
IPC分类号: G06F9/54 , G06N20/00 , G06F17/16 , G06N3/04 , G06F11/36 , G06N3/088 , G06F21/62 , G06N5/04 , G06F17/15 , G06T7/194 , G06T7/254 , G06T7/246 , G06F16/2455 , G06F16/22 , G06F16/28 , G06F16/906 , G06F16/93 , G06F16/903 , G06F16/9038 , G06F16/9032 , G06F16/25 , G06F16/335 , G06F16/242 , G06F16/248 , G06F30/20 , G06F40/166 , G06F40/117 , G06F40/20 , G06F8/71 , G06F17/18 , G06F21/55 , G06F21/60 , G06N7/00 , G06Q10/04 , G06T11/00 , H04L9/40 , H04L67/306 , H04L67/00 , H04N21/234 , H04N21/81 , G06N5/00 , G06N5/02 , G06V30/196 , G06F18/22 , G06F18/23 , G06F18/24 , G06F18/40 , G06F18/213 , G06F18/214 , G06F18/21 , G06F18/20 , G06F18/2115 , G06F18/2411 , G06F18/2415 , G06N3/044 , G06N3/045 , G06N7/01 , G06N3/08 , G06V30/194 , G06V10/98 , G06V10/70
CPC分类号: G06F9/541 , G06F8/71 , G06F9/54 , G06F9/547 , G06F11/3608 , G06F11/3628 , G06F11/3636 , G06F16/2237 , G06F16/2264 , G06F16/248 , G06F16/2423 , G06F16/24568 , G06F16/254 , G06F16/258 , G06F16/283 , G06F16/285 , G06F16/288 , G06F16/335 , G06F16/906 , G06F16/9038 , G06F16/90332 , G06F16/90335 , G06F16/93 , G06F17/15 , G06F17/16 , G06F17/18 , G06F18/213 , G06F18/214 , G06F18/217 , G06F18/2115 , G06F18/2148 , G06F18/2193 , G06F18/22 , G06F18/23 , G06F18/24 , G06F18/2411 , G06F18/2415 , G06F18/285 , G06F18/40 , G06F21/552 , G06F21/60 , G06F21/6245 , G06F21/6254 , G06F30/20 , G06F40/117 , G06F40/166 , G06F40/20 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/08 , G06N3/088 , G06N5/00 , G06N5/02 , G06N5/04 , G06N7/00 , G06N7/01 , G06N20/00 , G06Q10/04 , G06T7/194 , G06T7/246 , G06T7/248 , G06T7/254 , G06T11/001 , G06V10/768 , G06V10/993 , G06V30/194 , G06V30/1985 , H04L63/1416 , H04L63/1491 , H04L67/306 , H04L67/34 , H04N21/23412 , H04N21/8153 , G06T2207/10016 , G06T2207/20081 , G06T2207/20084
摘要: Systems and methods for clustering data are disclosed. For example, a system may include one or more memory units storing instructions and one or more processors configured to execute the instructions to perform operations. The operations may include receiving data from a client device and generating preliminary clustered data based on the received data, using a plurality of embedding network layers. The operations may include generating a data map based on the preliminary clustered data using a meta-clustering model. The operations may include determining a number of clusters based on the data map using the meta-clustering model and generating final clustered data based on the number of clusters using the meta-clustering model. The operations may include and transmitting the final clustered data to the client device.
-
公开(公告)号:US20230418845A1
公开(公告)日:2023-12-28
申请号:US18244440
申请日:2023-09-11
CPC分类号: G06F16/288 , G06F16/2264
摘要: The interpretation of a graph data structure represented on a computing system in which the connection between a pair of nodes in the graph may be interpreted by which intermediary entity (node or edge) on a path (e.g., a shortest path) between the node pair is most dominant. That is, if the intermediary entity were not present, a detour path is determined. The greater the difference between the detour path and the original path, the more significant that intermediary entity is. The significance of multiple intermediary entities in the original path may be determined in this way.
-
公开(公告)号:US20230418799A1
公开(公告)日:2023-12-28
申请号:US18465936
申请日:2023-09-12
申请人: XRDNA
IPC分类号: G06F16/22 , G06Q30/0241 , G06F16/21 , G06F16/28 , G06F16/955
CPC分类号: G06F16/2264 , G06Q30/0277 , G06F16/21 , G06F16/283 , G06F16/289 , G06F16/2237 , G06F16/9566
摘要: A method for the visualization and addressing of data within a volumetric container, using XYZ coordinates represented as a vector. Whereas users build their own immersive experience, variants, and/or representations of their respective data as polygons nested within a virtual universe. This includes variants such as time, space, velocity and trajectory as they relate to data containers, and the tracking of each user's multi-dimensional representations. This method also creates permanent threaded connections between web data, social communities and data retrieved from any other source, to a structured polygon based correlation library.
-
公开(公告)号:US20230418563A1
公开(公告)日:2023-12-28
申请号:US18462753
申请日:2023-09-07
申请人: Donyati, LLC
CPC分类号: G06F8/30 , G06F16/2264 , G06F8/60 , G06F16/285 , G06F8/447 , G06F16/2246
摘要: Systems and methods for generating custom applications for querying a multidimensional database of a target platform include, responsive to receiving a custom application request, an application definition is discovered based on data received from one or more sources. The application definition indicates target outputs of the custom application, influencers for each of the target outputs that correspond to members of one or more first dimensions of the multidimensional database, and granularity definitions relative to second dimensions of the multidimensional database for each influencer. Mutually exclusive groups each including two or more target outputs are generated by applying a weighting algorithm to the application definition, and resource-efficient machine written code is dynamically generated based on the groupings and the results of the weighting algorithm. The machine written code is compiled into an application package, which is then deployed to the target platform for execution on the multidimensional database.
-
97.
公开(公告)号:US20230409648A1
公开(公告)日:2023-12-21
申请号:US18363540
申请日:2023-08-01
IPC分类号: G06F16/93 , G06Q10/067 , G06F16/22 , G06F8/20 , G06F16/2453 , G06F16/28 , G06F40/186 , G06F16/83
CPC分类号: G06F16/93 , G06Q10/067 , G06F16/2228 , G06F8/24 , G06F16/83 , G06F16/2264 , G06F16/282 , G06F40/186 , G06F16/2453
摘要: Case management systems and techniques are disclosed. In various embodiments, searching case instances is facilitated. An indication to create a composite index across hierarchical case nodes comprising a case model is received. Case instance data associated with the case model is used to generate the composite index. The composite index is made available to be used to optimize searches of a plurality of case instances with which the case instance data is associated.
-
公开(公告)号:US20230401239A1
公开(公告)日:2023-12-14
申请号:US18331053
申请日:2023-06-07
申请人: Trovata, Inc.
CPC分类号: G06F16/285 , G06F16/258 , G06F16/2264 , G06F16/2237
摘要: A system and method are described that receive digital records received from disparate computer systems wherein the records are heterogeneous in format and thus noisy. The systems utilize mapping to higher-dimensional vector spaces, clustering, reduction, and autocorrelation to identify and extract groups of related resource management operations from the noise of the system inputs.
-
公开(公告)号:US20230394071A1
公开(公告)日:2023-12-07
申请号:US18345858
申请日:2023-06-30
发明人: Rui DING , Zhouyu FU , Shi HAN , Haidong ZHANG , Dongmei ZHANG
IPC分类号: G06F16/28 , G06F16/22 , G06F16/248
CPC分类号: G06F16/288 , G06F16/285 , G06F16/2264 , G06F16/248
摘要: According to implementations of the subject matter described herein, there is proposed a solution for automatic analysis of a difference between multi-dimensional datasets. In this solution, an analysis request is received for a first dataset and a second dataset, each of which including data items corresponding to a plurality of dimensions. In response to the analysis request, data items corresponding to a first dimension in the first and second datasets are compared. Based on the comparison, a first set of influence factors associated with the first dimension are determined, each influence factor indicating a reason for a difference between the first and second datasets from a respective perspective. An analysis result related to the difference between the first and second datasets is presented based on the first set of influence factors. In this way, it is possible to achieve automatic and efficient analysis of the difference between the different datasets.
-
100.
公开(公告)号:US20230376362A1
公开(公告)日:2023-11-23
申请号:US18360482
申请日:2023-07-27
发明人: Austin WALTERS , Mark WATSON , Anh TRUONG , Jeremy GOODSITT , Reza FARIVAR , Kate KEY , Vincent PHAM , Galen RAFFERTY
IPC分类号: G06F9/54 , G06N20/00 , G06F17/16 , G06N3/04 , G06F11/36 , G06N3/088 , G06F21/62 , G06N5/04 , G06F17/15 , G06T7/194 , G06T7/254 , G06T7/246 , G06F16/2455 , G06F16/22 , G06F16/28 , G06F16/906 , G06F16/93 , G06F16/903 , G06F16/9038 , G06F16/9032 , G06F16/25 , G06F16/335 , G06F16/242 , G06F16/248 , G06F30/20 , G06F40/166 , G06F40/117 , G06F40/20 , G06F8/71 , G06F17/18 , G06F21/55 , G06F21/60 , G06N7/00 , G06Q10/04 , G06T11/00 , H04L9/40 , H04L67/306 , H04L67/00 , H04N21/234 , H04N21/81 , G06N5/00 , G06N5/02 , G06V30/196 , G06F18/22 , G06F18/23 , G06F18/24 , G06F18/40 , G06F18/213 , G06F18/214 , G06F18/21 , G06F18/20 , G06F18/2115 , G06F18/2411 , G06F18/2415 , G06N3/044 , G06N3/045 , G06N7/01 , G06V30/194 , G06V10/98 , G06V10/70 , G06N3/06 , G06N3/08
CPC分类号: G06F9/541 , G06N20/00 , G06F17/16 , G06N3/04 , G06F11/3628 , G06N3/088 , G06F21/6254 , G06N5/04 , G06F17/15 , G06F21/6245 , G06T7/194 , G06T7/254 , G06T7/246 , G06T7/248 , G06F16/24568 , G06F16/2237 , G06F16/285 , G06F16/906 , G06F16/93 , G06F16/90335 , G06F16/9038 , G06F16/90332 , G06F16/258 , G06F16/288 , G06F16/283 , G06F16/335 , G06F16/2264 , G06F16/2423 , G06F16/248 , G06F16/254 , G06F30/20 , G06F40/166 , G06F40/117 , G06F40/20 , G06F8/71 , G06F9/54 , G06F9/547 , G06F11/3608 , G06F11/3636 , G06F17/18 , G06F21/552 , G06F21/60 , G06N7/00 , G06Q10/04 , G06T11/001 , H04L63/1416 , H04L63/1491 , H04L67/306 , H04L67/34 , H04N21/23412 , H04N21/8153 , G06N5/00 , G06N5/02 , G06V30/1985 , G06F18/22 , G06F18/23 , G06F18/24 , G06F18/40 , G06F18/213 , G06F18/214 , G06F18/217 , G06F18/285 , G06F18/2115 , G06F18/2148 , G06F18/2193 , G06F18/2411 , G06F18/2415 , G06N3/044 , G06N3/045 , G06N7/01 , G06V30/194 , G06V10/993 , G06V10/768 , G06N3/06 , G06N3/08 , G06T2207/20084 , G06T2207/10016 , G06T2207/20081
摘要: Systems and methods for generating synthetic data are disclosed. For example, a system may include one or more memory units storing instructions and one or more processors configured to execute the instructions to perform operations. The operations may include receiving a dataset including time-series data. The operations may include generating a plurality of data segments based on the dataset, determining respective segment parameters of the data segments, and determining respective distribution measures of the data segments. The operations may include training a parameter model to generate synthetic segment parameters. Training the parameter model may be based on the segment parameters. The operations may include training a distribution model to generate synthetic data segments. Training the distribution model may be based on the distribution measures and the segment parameters. The operations may include generating a synthetic dataset using the parameter model and the distribution model and storing the synthetic dataset.
-
-
-
-
-
-
-
-
-