Abstract:
A method for air conditioning a motor vehicle, in which, in a heating mode, the passenger compartment of the motor vehicle is heated via a passenger compartment heat exchanger (5) through heat pump operation of a refrigerating circuit (1). To prevent fogging of the windows of the motor vehicle from the outset, the temperature and humidity in the passenger compartment are recorded by measurement technology, and when the temperature is in a predefined range and the atmospheric humidity reaches a defined threshold, the mass flow of refrigerant in the circuit is throttled upstream of the passenger compartment heat exchanger (5), in such a manner that the moisture contained in the air stream passing the passenger compartment heat exchanger (5) is at least substantially condensed at the passenger compartment heat exchanger (5), and the moisture which has already condensed at the heat exchanger (5) remains at the heat exchanger (5). The passenger compartment is heated by a heat source which is outside the circuit (1) until the temperature in the passenger compartment exceeds an upper limit temperature of the predefined range.
Abstract:
A ball valve apparatus for a refrigeration system is described. The ball valve apparatus comprises a ball valve for controlling flow of refrigerant and a moisture indicator for showing a moisture content of the refrigerant, and the moisture indicator and the ball valve are formed as one body. Since a moisture indicator and a ball valve are formed as one body, the installation cost and the size of a refrigeration system can be reduced.
Abstract:
The technology described herein provides a device and methods for meat storage, tenderizing, and aging in a temperature and humidity controlled environment. A portable electric cooler is disclosed having first and second sets of low pressure coils coupled to a compressor and three-way solenoid valves in order to alternate in a timed pattern the refrigerant flow in order to allow one set of low pressure coils to defrost while the other set circulates the refrigerant. The cooler includes a temperature sensor, humidity sensor, and humidity controller to monitor and control temperature and humidity levels within the refrigeration chamber. The cooler also includes a pressurized water canister, a spray nozzle, and a pulse solenoid valve. The pulse solenoid valve is configured to discharge a mist through the spray nozzle into the refrigeration chamber as required to maintain a desired humidity.
Abstract:
A real-time monitoring system that monitors various aspects of the operation of a refrigerant-cycle system is described. In one embodiment, the system includes a processor that measures power provided to the refrigerant-cycle system and that gathers data from one or more sensors and uses the sensor data to calculate a figure of merit related to the efficiency of the system. In one embodiment, the sensors include one or more of the following sensors: a suction line temperature sensor, a suction line pressure sensor, a suction line flow sensor, a hot gas line temperature sensor, a hot gas line pressure sensor, a hot gas line flow sensor, a liquid line temperature sensor, a liquid line pressure sensor, a liquid line flow sensor. In one embodiment, the sensors include one or more of an evaporator air temperature input sensor, an evaporator air temperature output sensor, an evaporator air flow sensor, an evaporator air humidity sensor, and a differential pressure sensor. In one embodiment, the sensors include one or more of a condenser air temperature input sensor, a condenser air temperature output sensor, and a condenser air flow sensor, an evaporator air humidity sensor. In one embodiment, the sensors include one or more of an ambient air sensor and an ambient humidity sensor.
Abstract:
An air conditioning apparatus has plural indoor units having: plural heat exchangers; and flow controllers respectively corresponding to the heat exchangers. In each of the indoor units, one heat exchanger is used as a condenser, and another heat exchanger is used as an evaporator, thereby causing the indoor unit to perform a temperature and humidity controlling operation. An indoor unit(s) which is not set to perform the temperature and humidity controlling operation may be caused to perform a heating operation or a cooling operation. Capacity controls on the condensers and the evaporators are performed by corresponding flow controllers. Gas refrigerants ejected from plural heat exchangers serving as evaporators are joined together, and then distributed to plural heat exchangers serving as condensers.
Abstract:
A method of operating a refrigerated merchandiser. The refrigerated merchandiser includes a case that defines a product display area, and at least one door that provides access to the product display area. The method includes sensing a parameter of an ambient environment adjacent the case, delivering a signal indicative of the sensed parameter to a controller, and determining a duty cycle using the controller based on the signal indicative of the sensed parameter. The method also includes detecting a change in the sensed parameter using the controller, interrupting the duty cycle by initiating a clearing interval using the controller in response to the controller receiving the signal indicative of the change in the sensed parameter, and clearing condensation from the door during the clearing interval.
Abstract:
The refrigerant charge adequacy of an air conditioning system is determined by the sensing of two temperatures in the system, one being at a midpoint in a condenser coil and the other being the temperature in the liquid line of the condenser discharge, with the difference then being indicative of the degree of subcooling, which, in turn, may be indicative of refrigerant charge condition. The method is refined by measuring a third temperature at the compressor discharge, with the three temperature values then being used to calculate a pair of residual values which provide an indication of whether the two temperature approach is useful in determining charge adequacy under the existing conditions and if not, whether the system is overcharged or undercharged.
Abstract:
A device for controlling the refrigeration and humidity inside a drawer movable within a compartment of a refrigerator, the drawer being insertable into the forced-air compartment provided in a cabinet of the refrigerator, the compartment receiving cold air forced through a feed conduit provided in the cabinet. The conduit is divided into a plurality of channels, one opening into a side wall of the compartment, and at least one other opening at an upper wall of the compartment above the drawer, in the channels an interceptor member is provided to allow control of the air flow passing through it and directed to the compartment for the drawer.
Abstract:
A system for cooling gas heated by passing the gas over heat-producing equipment to cool the equipment comprises a heat exchanger including a first heat transfer mechanism configured to transfer heat from the heated gas to a first coolant, and a first condensing module connected for fluid communication with the heat exchanger and including second and third heat transfer mechanisms, the first condensing module being configured to transfer heat through the second and third heat transfer mechanisms from the first coolant to second and third coolants in the second and third heat transfer mechanisms, respectively.
Abstract:
A real-time monitoring system that monitors various aspects of the operation of a refrigerant-cycle system is described. In one embodiment, the system includes a processor that measures power provided to the refrigerant-cycle system and that gathers data from one or more sensors and uses the sensor data to calculate a figure of merit related to the efficiency of the system. In one embodiment, the sensors include one or more of the following sensors: a suction line temperature sensor, a suction line pressure sensor, a suction line flow sensor, a hot gas line temperature sensor, a hot gas line pressure sensor, a hot gas line flow sensor, a liquid line temperature sensor, a liquid line pressure sensor, a liquid line flow sensor. In one embodiment, the sensors include one or more of an evaporator air temperature input sensor, an evaporator air temperature output sensor, an evaporator air flow sensor, an evaporator air humidity sensor, and a differential pressure sensor. In one embodiment, the sensors include one or more of a condenser air temperature input sensor, a condenser air temperature output sensor, and a condenser air flow sensor, an evaporator air humidity sensor. In one embodiment, the sensors include one or more of an ambient air sensor and an ambient humidity sensor.