Abstract:
The invention relates to a drive mechanism (1) for rotatably coupling a first system part or machine part, preferably an assembly (A), to a base, pedestal or frame or to another system part or machine part, for example for rotary positioning during the processing of large workpieces or during the moving of loads, which drive mechanism comprises two ring-shaped connecting elements (3, 4) each having at least one planar connecting surface (5, 6) and fastening means (7, 8) that are arranged distributed in a crown shape therein and effect connection to different system parts or machine parts or the like, said two connecting elements (3, 4) being arranged concentrically with each other and radially one inside the other with a gap-shaped interspace (9) in which are disposed one or more rows of rolling elements (14, 15, 16), each row whereof rolls between two respective raceways (17, 18) on the two connecting elements (3, 4), thus enabling same to rotate relative to each other, at least one connecting surface (5, 6) and at least one raceway (17, 18) being formed by machining or shaping a common base body. The invention is characterized in that at least one fully circumferentially extending row of magnets (40) is arranged inside the gap (9) on one connecting element (3, 4) and at least one fully circumferentially extending row of coils (38) is arranged directly opposite said magnets on the other connecting element (4, 3). According to the invention, at least one fully circumferentially extending row of magnets is arranged inside the gap on one connecting element and at least one fully circumferentially extending row of coils is arranged directly opposite said magnets on the other connecting element.
Abstract:
A bearing assembly (12) for a rotating element (13) has one race (15) adapted to be fixed relative to ground (11) and to selectively be free for arcuate movement relative to ground. In a preferred embodiment a selective locking device (18) is provided for the relatively fixed/movable race (15).
Abstract:
A one-way bearing, including: an outer race fixed around an inner supporting bracket, wherein the combination of the outer race and the inner supporting bracket defines a plurality of cavities between the outer race and the inner supporting bracket; and a rolling member provided in each of the plurality of cavities, wherein the rolling member is arrange to rotate and move within each of the plurality of cavities; wherein a blocking structure is provided at each of the plurality of cavities so as to block the rolling member within each of the plurality of cavities from entering an adjacent cavity.
Abstract:
A wave generator of a hollow strain wave gearing has a rigid plug and a needle roller bearing. The needle roller bearing has an inner ring trajectory surface formed in the plug external peripheral surface, a flexible outer ring, an outer ring trajectory surface formed in an inner peripheral surface of the outer ring, and needle rollers. An inner ring trajectory groove is formed in the plug external peripheral surface, and the inner ring trajectory surface is formed in a groove bottom surface of the inner ring trajectory groove. Inner-ring-side restricting surfaces for restricting the needle rollers from moving in the center axis direction are formed in groove side surfaces on both sides of the inner ring trajectory groove. A wave generator can be obtained, which is suitable for increasing the hollow diameter of a strain wave gearing.
Abstract:
An aircraft tail rotor system is provided and includes a rotating element, a translating element and a structure including a first bearing in series with a second bearing, the first bearing including a component rotatable with and movable within the rotating element in accordance with translational movement of the translating element. The structure is configured to selectively use the second bearing to prevent transmission of rotational energy from the rotating element to the translating element in an event of a seizing of the first bearing.
Abstract:
Exemplary embodiments disclosed herein include bearings with three races: an inner race, a shared race, and an outer race that exhibit increased life under oscillatory loads. The exemplary embodiments may include one or more directional biasing mechanisms configured such that when a bearing shaft rotates in one direction, the shared race rotates with it, and when the shaft oscillates in the other direction, the shared race is impeded from moving in the other direction. Under continued oscillation, the shared race will “walk” in circles around the shaft, effectively distributing the load and wear over the entire circumference of a bearing surface.
Abstract:
A rotary joint which, in order to limit the mutual rotation of the outer bearing ring (2) with respect to the inner bearing ring (2), is provided with a raceway (11), which is limited by one or two stops (14) and in which a projection connected to the outer bearing ring engages. In order to ensure that a rotation greater than 360° is possible, the raceway is of helical design.
Abstract:
The invention relates to a linking device having a bearing and a weapons system comprising such a device. The aim of the device is to adjust the rotational resisting torque of two coaxial cylindrical parts (8, 10) which are rotatable relative to one another about a shared axis (A). According to the invention, said bearing (21) includes two rings (23, 24) made of a resiliently deformable material, capable of respectively engaging with the two cylindrical portions (8, 10), and between which rolling elements (25) are arranged such as to be in contact with raceways of said rings, said device comprising a controllable member (22) for adjusting the tightening of the rings, capable of engaging with one of said parts in order to engage with said bearing.
Abstract:
A wheel bearing unit for use with a drum brake including an outer ring and an inner ring. The drum brake having a brake drum and a tie plate. A rotational speed measurement unit having a sensor and a transmitter ring is located in a transmitter chamber defined by the wheel bearing and the back plate. A ventilation duct connects the transmitter chamber to an inner space of the drum brake.
Abstract:
The invention relates to a drive mechanism (1) for rotatably coupling a first system part or machine part, preferably an assembly (A), to a base, pedestal or frame or to another system part or machine part, for example for rotary positioning during the processing of large workpieces or during the moving of loads, which drive mechanism comprises two ring-shaped connecting elements (3, 4) each having at least one planar connecting surface (5, 6) and fastening means (7, 8) that are arranged distributed in a crown shape therein and effect connection to different system parts or machine parts or the like, said two connecting elements (3, 4) being arranged concentrically with each other and radially one inside the other with a gap-shaped interspace (9) in which are disposed one or more rows of rolling elements (14, 15, 16), each row whereof rolls between two respective raceways (17, 18) on the two connecting elements (3, 4), thus enabling same to rotate relative to each other, at least one connecting surface (5, 6) and at least one raceway (17, 18) being formed by machining or shaping a common base body. The invention is characterized in that at least one fully circumferentially extending row of magnets (40) is arranged inside the gap (9) on one connecting element (3, 4) and at least one fully circumferentially extending row of coils (38) is arranged directly opposite said magnets on the other connecting element (4, 3). According to the invention, at least one fully circumferentially extending row of magnets is arranged inside the gap on one connecting element and at least one fully circumferentially extending row of coils is arranged directly opposite said magnets on the other connecting element.