Abstract:
A reciprocating pump assembly has a pump housing with a crankshaft. A plunger is connected to the crankshaft for pumping a fluid through a cylinder. The cylinder has a fluid inlet port and an opening that provides access to the cylinder. A suction cover is mounted in the opening and has a hub that is coaxial with an axis of the suction cover. A suction valve stop is mounted adjacent one of the fluid ports and has a spring retainer. A column extends from the spring retainer, and a bushing is mounted to the spring retainer for engaging and being retained by the hub of the suction cover. The suction cover guides the suction valve stop in operation and, when the suction cover is removed from the opening, the suction valve stop is removable.
Abstract:
A flowline connection assembly connects first and second tubular members to each other. Each tubular member has an external flange on its end. A conical recess is formed in the bore at the end of each of the tubular members. A metal ring has a pair of legs extending in opposite axial directions, each of the legs having a conical outer surface that engages one of the conical recesses. Each ring has an elastomeric seal that seals the recess. A clamp has cam surfaces that engage the flanges and pull the tubular members axially toward each other.
Abstract:
An apparatus according to which a power end of a reciprocating pump assembly includes a block having bores formed therethrough, and crossheads disposed in the bores and adapted to reciprocate therein. A lubrication pump is in fluid communication with the bores. The pump is operable to pump lubrication fluid into each of the bores so that the crossheads are lubricated as they reciprocate within their respective bores. In another aspect, a power end includes a crosshead block and a power frame connected thereto, the frame including rib plates and supporting the crosshead block. In yet another aspect, a method includes casting a crosshead block; fabricating rib plates; connecting the rib plates to form a frame; and connecting the cast crosshead block to the frame. In some embodiments, the power ends may be used in oilfield operations such as, for example, the cementing, acidizing, or fracturing of a subterranean wellbore.
Abstract:
An apparatus according to which a subterranean formation in which a wellbore extends is hydraulically fractured, the apparatus comprising first and second manifolds, the first manifold including first and second flow lines adapted to be in fluid communication with first and second pumps, respectively, the first pump being adapted to pressurize fluid received from the first flow line, and the second pump being adapted to pressurize fluid received from the second flow line, and the second manifold including a third flow line adapted to convey pressurized fluid from the first and second pumps to the wellbore to hydraulically fracture the subterranean formation in which the wellbore extends. The apparatus is adapted to be connected to another apparatus used to hydraulically fracture the subterranean formation in which the wellbore extends by moving one, or both, of the first and second flow lines relative to the third flow line.
Abstract:
This disclosure presents a pump body, such as a fluid end housing used in a reciprocating pump, which provides an integral seating or engagement surface (or a valve seat integrated with the pump body) for a valve member. The integral engagement surface removes the need for a separate, replaceable valve seat and can last as long as the service life of the fluid end housing. This saves multiple maintenance services during the service life of the fluid end housing, along with the associated down time, labor costs, and material costs for the new valve seats. The integral engagement surface thus performs as an integral valve seat to the pump body. In some embodiments, the integral engagement surface may be coated, heat-treated, or otherwise modified to increase its wear resistance, such as by including one or more wear-resistant inserts to at least partially contact the valve member.
Abstract:
An apparatus according to which a subterranean formation in which a wellbore extends is hydraulically fractured, the apparatus comprising first and second manifolds, the first manifold including first and second flow lines adapted to be in fluid communication with first and second pumps, respectively, the first pump being adapted to pressurize fluid received from the first flow line, and the second pump being adapted to pressurize fluid received from the second flow line, and the second manifold including a third flow line adapted to convey pressurized fluid from the first and second pumps to the wellbore to hydraulically fracture the subterranean formation in which the wellbore extends. The apparatus is adapted to be connected to another apparatus used to hydraulically fracture the subterranean formation in which the wellbore extends by moving one, or both, of the first and second flow lines relative to the third flow line.
Abstract:
A valve assembly for use in a fracturing pump including a valve member movable into and out of engagement with a valve seat body. The valve seat body includes an outer surface and an inner surface, the inner surface forming a fluid bore extending between a first end and a second end of the valve seat body. The body further includes a seating surface extending radially from the inner surface and facing the valve member, the seating surface having a recessed area. An insert is disposed in the recessed area forming at least a portion of the inner surface and at least portion of the seating surface. The valve seat body first end has a diameter different from a diameter valve seat body second. The difference between diameters allows the valve seat body outer surface to be supported by the fluid passageway.
Abstract:
A fluid cylinder for a reciprocating pump includes a body having inlet, outlet, and plunger bores. The inlet and outlet bores extend coaxially along a fluid passage axis. The plunger bore extends along a plunger bore axis that extends at an angle relative to the fluid passage axis. The body includes a crossbore at the intersection of the fluid passage axis and the plunger bore axis. The crossbore intersects the inlet, outlet, and plunger bores at respective inlet, outlet, and plunger bore ends. The inlet bore end and outlet bore ends are connected to the plunger bore end at respective first and second corners of the crossbore. The first corner includes a first linear bridge segment connected to the inlet and plunger bore ends by corresponding curved segments. The second corner includes a second linear bridge segment connected to the outlet and plunger bore ends by corresponding curved segments.
Abstract:
A lubrication system for a frac pump includes a lubrication system housing, a lubricant tank held by the lubrication system housing, a heating device held by the lubrication system housing, a cooling device held by the lubrication system housing, and a filtration device held by the lubrication system housing. The lubrication system housing is configured to be at least one of mounted to a frac pump housing of the frac pump or held within the frac pump housing.
Abstract:
According to one aspect, a pressure relief valve assembly includes a clamped rupture disc. The rupture disc is adapted to rupture when a pressure differential across the pressure relief valve assembly reaches or exceeds a predetermined pressure differential. According to another aspect, there is provided a method of retrofitting a pressure relief valve assembly. According to yet another aspect, there is provided a method of assembling a pressure relief valve assembly.