Abstract:
A method of forming a dual damascene metal interconnect for a semiconductor device. The method includes forming a layer of low-k dielectric, forming vias through the low-k dielectric layer, depositing a sacrificial layer, forming trenches through the sacrificial layer, filling the vias and trenches with metal, removing the sacrificial layer, then depositing an extremely low-k dielectric layer to fill between the trenches. The method allows the formation of an extremely low-k dielectric layer for the second level of the dual damascene structure while avoiding damage to that layer by such processes as trench etching and trench metal deposition. The method has the additional advantage of avoiding an etch stop layer between the via level dielectric and the trench level dielectric.
Abstract:
A Cu-containing material is provided as an absorber layer of an EUV mask. With the absorber layer of the Cu-containing material, the same lithography performance of a conventional absorber in 70 nm thickness of TaBN can be achieved by only a 30-nm thickness of the absorber layer according to the various embodiments of the present disclosure. Furthermore, the out-off-band (OOB) flare of the radiation light in 193-257 nm can be reduced so as to achieve the better lithography performance.
Abstract:
A Cu-containing material is provided as an absorber layer of an EUV mask. With the absorber layer of the Cu-containing material, the same lithography performance of a conventional absorber in 70 nm thickness of TaBN can be achieved by only a 30-nm thickness of the absorber layer according to the various embodiments of the present disclosure. Furthermore, the out-off-band (OOB) flare of the radiation light in 193-257 nm can be reduced so as to achieve the better lithography performance.
Abstract:
The present disclosure relates to a method of forming a pattern on a semiconductor substrate. One or more layers are formed over the semiconductor substrate. A first self-assembled monolayer (SAM) layer is formed over the one or more layers, wherein the first SAM layer exhibits a first SAM pattern. At least a first of the one or more layers is patterned using the first SAM layer as a first etch mask to form first pillars in the first of the one or more layers and then removing the first SAM layer. A second self-assembled monolayer (SAM) layer is formed along sidewall portions of the first pillars after the first SAM layer has been removed, wherein the second SAM layer exhibits a second SAM pattern that differs from the first SAM pattern and where the second SAM layer differs in material composition from the first SAM layer.