Abstract:
A communications system for device-to-device communications includes a group of plural communications devices, each configured to perform device-to-device communications via a wireless access interface with one or more other communications devices of the group. One of the communications devices is configured to detect interference in communications resources of the wireless access interface caused by signals transmitted by another communications device, and to provide, in response to detecting the interference, an indication of the interference to one or more of the communications device. By the communications device of the first group of communications devices detecting the interference and communicating an indication of the interference to the other members of the group, then members of the group can adapt the transmission and reception of data via the wireless access interface to avoid resources of the wireless access interface which is subject to interference.
Abstract:
A wireless telecommunications system including a base station and terminal device, supporting a virtual carrier mode with downlink communications made by the base station using a radio interface spanning a system frequency bandwidth while the terminal device can receive at least some communications from the base station within a restricted subset of transmission resources selected from within the system frequency bandwidth providing a restricted bandwidth downlink. The terminal device can measure channel conditions across the system frequency bandwidth and transmit corresponding measurement reports to the base station. Measurement reports for transmission resources not including the restricted bandwidth downlink channel may be aperiodic while measurement reports for transmission resources including the restricted bandwidth downlink channel may be periodic. Measurement reports for transmission resources not including the restricted bandwidth downlink channel may be based on a subset of the channel condition measurements selected because they are associated with relatively poor channel conditions.
Abstract:
A communications device is configured to transmit and receive data via a wireless access interface provided by a mobile communications network. The wireless access interface provides a plurality of communications resource elements across a host frequency range of a host carrier, and providing a first section of the communications resources within a first frequency range for preferable allocation to reduced capability devices forming a first virtual carrier and, the first frequency range being within the host frequency range, and the wireless access interface includes a plurality of time divided sub-frames, and at least one of the sub-frames includes a control channel in a part of the sub-frame for communicating signaling messages to the communications devices and the reduced capability devices. The mobile communications network transmits first resource allocation messages to the communications devices to allocate one or more of the plurality of communications resource elements of the host frequency range of the host carrier and transmits second resource allocation messages to the reduced capability devices to allocate one or more of the first section of the communications resources within the first frequency range for preferable allocation to the reduced capability devices of the first virtual carrier, the first resource allocation messages identifying one or more of the communications resource of the host carrier allocated to the communications devices with reference to a first reference frequency of the host frequency band and the second resource allocation messages identifying the one or more communications resources of the first virtual carrier allocated to the reduced capability devices with reference to a second reference frequency within the first virtual carrier. As a result the amount of signalling information in the second resource allocation messages which is transmitted to the reduced capability devices to allocate resource in the virtual carrier can be reduced.
Abstract:
An apparatus and method providing feedback on channel conditions in a wireless telecommunications system including a base station to communicate with plural terminals device using frequencies spanning a system frequency bandwidth. At least one terminal device is a reduced capability terminal device including a tuneable transceiver configured to receive downlink transmissions from the base station using only a restricted frequency bandwidth smaller than and within the system frequency bandwidth. The reduced capability terminal device is configured to communicate information derived from measurements of channel conditions to the base station. The information may include an indication of measured channel conditions for different frequency locations, or an indication of one or more frequency locations for which corresponding measurement of channel conditions meet a pre-defined selection criterion. The base station subsequently schedules downlink transmissions for the terminal device in a manner that takes account of the information received from the terminal device.
Abstract:
The present technique provides a terminal device for use with a wireless telecommunications system, the terminal device comprising a receiver, a transmitter and a controller, wherein the controller is configured: to conduct a first measurement of a parameter associated with a radio signal transmitted by infrastructure equipment of the wireless telecommunications network and received by the receiver; to determine whether the measured parameter meets a predetermined criteria; and when the measured parameter is determined to meet the predetermined criteria, to conduct a second measurement of a parameter associated with a radio signal transmitted by infrastructure equipment of the wireless telecommunications network and received by the receiver. The present technique also provides an associated method and circuitry.
Abstract:
A method of transmitting data by a terminal device operating in a wireless communications system comprising a non-terrestrial network access node and the terminal device, comprises the terminal device receiving an indication of an initial value of a set of one or more communications parameters for transmitting radio signals carrying the data, and modelling a state of a communications channel from the terminal device to a non-terrestrial network access node, in which a link adaptation procedure is used to select a revised value of the set of the one or more communications parameters with respect to the initial value of the set of the one or more communications parameters for the modelled channel state, and the method includes adapting the value of the set of the one or more communications parameters according to the revised value.
Abstract:
A method for a communications device in a coverage region of a first cell generated by a non-terrestrial network part of a wireless communications network, the first cell being a serving cell for the communications device, the method comprising determining whether the coverage area of the first cell overlaps with a region associated with a coverage area of at least one non-serving cell, and in response to determining that the coverage area of the serving cell overlaps with a region associated with a coverage area of at least one non-serving cell, initiating measurements of signals transmitted on a frequency which is used for transmissions by infrastructure equipment associated with the at least one non-serving cell.
Abstract:
A communication network for providing a distributed ledger has at least one node configured to provide a distributed ledger function to other nodes.
Abstract:
A wireless telecommunication system includes base stations for communicating with terminal devices. One or more base stations support a power boost operating mode in which a base station's available transmission power is concentrated in a subset of its available transmission resources to provide enhanced transmission powers as compared to transmission powers on these transmission resources when the base station is not operating in the power boost mode. A base station establishes an extent to which one or more base stations in the wireless telecommunications system support the power boost operating mode conveys an indication of this to a terminal device. The terminal device receives the indication and uses the corresponding information to control its acquisition of a base station of the wireless telecommunication system, for example by taking account of which base stations support power boosting and/or when power boosting is supported during a cell attach procedure.
Abstract:
A method of operating a first terminal device to transmit data to a second terminal device by performing device-to-device communication includes selecting radio resources, on which to transmit the data based on a priority status associated with the data, whereby certain radio resource are reserved for use in association with data classified as high priority. A method of operating the second terminal device to receive data from the first terminal device includes: receiving data from the first terminal device using the selected radio resources; determining if another terminal device is transmitting data on a radio resource which is not selected for transmitting data by the first terminal device and which is reserved for transmitting data classified as having a high priority; and, if so, stopping reception of data from the first terminal device on the selected radio resources and instead seeking to receive further transmissions from the other terminal device.