Abstract:
A display device includes a first electrode stem and a second electrode stem extended in a first direction and spaced from each other, a first electrode branch branching off from the first electrode stem and extended in a second direction, a second electrode branch branching off from the second electrode stem and extended in the second direction, a third electrode between the first electrode branch and the second electrode branch and one or more light-emitting elements between the first electrode branch and the third electrode and between the third electrode and the second electrode branch, wherein the third electrode is extended in the second direction, and both ends of the third electrode in the second direction are spaced from the first electrode stem and from the second electrode stem, respectively.
Abstract:
A display device includes a first pixel and a second pixel; a light emitting layer; a color conversion layer on the light emitting layer; and a color filter layer on the color conversion layer, the light emitting layer including one or more light emitting elements in the first pixel and the second pixel, the color conversion layer including a first color conversion layer in the first pixel and a second color conversion layer in the second pixel. The color filter layer includes a first color filter layer in the first pixel and a second color filter layer in the second pixel, the light emitting elements capable of emitting a first light having a first wavelength, each of the first color conversion layer and the second color conversion layer including first color conversion particles and second color conversion particles.
Abstract:
A light emitting device may include: a substrate including emission areas; a first electrode disposed on the substrate; a second electrode disposed on the substrate and spaced apart from the first electrode; light emitting elements disposed on the substrate, each of the light emitting elements including a first end and a second end in a longitudinal direction of the light emitting elements; a bank disposed in each of the emission areas and including openings in which portions of each of the unit emission areas are exposed; a first contact electrode that electrically connects the first electrode with the first end of each of the light emitting elements; and a second contact electrode that electrically connects the second electrode with the second end of each of the light emitting elements. At least one of the light emitting elements may be disposed in each of the openings.
Abstract:
A light emitting device may include: a substrate including a plurality of unit light emitting regions; and first to fourth insulating layers sequentially on the substrate. Each of the unit light emitting regions may include: at least one light emitting element on the first insulating layer, the at least one light emitting element including a first end portion and a second end portion in a length direction thereof; first and second banks on the substrate; a first electrode on the first bank and a second electrode on the second bank; a first contact electrode on the first electrode; a second contact electrode on the second electrode; and a conductive pattern provided between the first insulating layer and the first contact electrode, the conductive pattern surrounding the first and second electrodes when viewed on a plane.
Abstract:
A display device includes a display panel including a plurality of pixels and a panel driver that drives the display panel. Each of the pixels includes a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, a sixth transistor, a seventh transistor, an eighth transistor, a first capacitor, and an emission element.
Abstract:
Provided herein may be a stage and an emission control driver having the same. The stage may include an output unit configured to supply a voltage of a first or second power supply to a first output terminal depending on voltages of first and second nodes, an input unit configured to control the voltages of the second node and a third node, a first signal processing unit configured to control the voltage of the first node, and supply a voltage corresponding to the first node to a second output terminal, a second signal processing unit including a second capacitor coupled between the third node and a fifth node, the second signal processing unit being configured to control the voltage of the first node, and control a potential difference between opposite terminals of the second capacitor, and a third signal processing unit configured to control the voltage of the second node.
Abstract:
A display device includes a display panel including a plurality of pixels and a panel driver that drives the display panel. Each of the pixels includes a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, a sixth transistor, a seventh transistor, an eighth transistor, a first capacitor, and an emission element.
Abstract:
A display device includes: a substrate; a display element layer on one surface of the substrate and including at least one light emitting element emitting light; and a pixel circuit portion on the display element layer and including at least one transistor electrically connected to the light emitting element, wherein the display element layer includes: a first electrode on the substrate and electrically connected to one end of the light emitting element; a second electrode on the substrate and electrically connected to the other end of the light emitting element; and an insulation layer on the substrate including the second electrode, and having a first opening exposing a portion of the second electrode, and wherein the second electrode is electrically connected to the transistor through the first opening.
Abstract:
A thin film transistor includes an insulating pattern disposed on a substrate, a gate electrode disposed on the insulating pattern, a gate insulating layer disposed on the gate electrode, a semiconductor layer disposed on the gate insulating layer, and a source electrode and a drain electrode, the source electrode and the drain electrode being disposed on the semiconductor layer and distanced apart from each other. The gate electrode surrounds an upper surface and a side surface of the insulating pattern and overlaps a first portion of a substrate surface.
Abstract:
A display apparatus includes a first substrate and a second substrate. The first substrate includes a light shielding layer including a first opening which transmits a light. The second substrate includes a shutter including a second opening which corresponds to the first opening, and a first flexible electrode part which is connected to one end of the shutter and transmits or blocks the light by moving the shutter. The first flexible electrode part includes a first flexible electrode, a second flexible electrode, and an insulation pattern. The insulation pattern insulates the first flexible electrode and the second flexible electrode from each other, and exposes upper and lower surfaces of the first flexible electrode and the second flexible electrode which are parallel to the second substrate, by covering portions of the first flexible electrode and the second flexible electrode.