Abstract:
A marker pulse discriminator monitor that enables filtering of partial discharge pulses for monitoring the condition of a generator in a power plant system. The monitor detects partial discharge pulses emanating from the generator and includes a plurality of first modules connected to respective isophase buses adjacent to the generator. Each of the first modules generate a marker pulse in response to a partial discharge pulse. The monitor also includes an analyzer unit connected to the isophase buses adjacent to a step-up transformer. The analyzer unit receives each partial discharge pulse and each marker pulse and determines a differential value corresponding to a difference between a time of arrival of a partial discharge pulse and a time of arrival of a corresponding marker pulse to identify partial discharge pulses originating at the generator and to identify the isophase bus associated with the corresponding partial discharge pulse.
Abstract:
A method for identifying an unfolded non-synchronous blade vibration frequency in blades on a rotating rotor using a plurality of probes spaced from each other about the rotor. A set of data is acquired from the probes during a predetermined number of rotor revolutions and is processed using a Fourier analysis to generate an output representative of frequencies and phase shift angles corresponding to blade vibrations. The phase shift angles are used to identify a subharmonic for a blade vibration frequency to provide an output identifying the vibration frequency. A space dispersion and time dispersion of probes is described to increase the accuracy of the subharmonic determination using the phase shift angles.
Abstract:
An optical inspection system is for visually inspecting the blades of a turbine at turning gear operation. The inspection system includes an imager for capturing images of the blades, an optical passage coupled to the imager and structured to provide maximum viewing area of the blades through an inspection port in the turbine and an illuminating assembly adapted to illuminate the blades while the imager captures images thereof. A method wherein the captured blade images are inspected for blade defects, is also disclosed.
Abstract:
A method for predicting a blade structure failure within a coupled blade structure including a plurality of blades supported for rotation on a rotor and a shroud structure coupling the blades. The method includes the steps of determining displacements of a plurality of predetermined circumferential locations on the shroud structure during rotation of the blade row, where the displacements are provided as a function of time relative to the periodic rotation of the shroud structure for time intervals that are integer multiples of rotor rotation. A signal characteristic related to vibrational mode and a nodal diameter of the shroud structure is derived based on the displacements of the circumferential locations on the shroud structure.
Abstract:
The claimed invention provides a blade vibration measuring system comprising a blade, a transmitter, a target with parallel edges located on the blade shroud and a receiver. The present invention also provides a blade adapted for measuring torsional blade vibration. Furthermore, the claimed invention provides a method for monitoring torsional blade vibration.
Abstract:
A wear determination device for determining vibration in a turbine engine component to reduce wear in a turbine engine. The wear determination device may be capable of measuring vibrations in a turbine engine component. The vibration measurement may be used to determine vibrations in a turbine engine to identify wear locations and sources of wear. The wear determination device may be configured such that multiple locations in a turbine engine may be monitored on a single turbine engine by moving the wear determination device from location to location.
Abstract:
A method for measuring the differential emissivity between two sites on the surface of a body and the temperature of the two sites. The method includes a plurality of measurements of the infrared radiation arising from each of the two sites under a number of different conditions. Some of the measurements include irradiation by external infrared radiation at a known wavelength and intensity. The infrared radiation arising from each of the sites may include emitted radiation, reflected ambient radiation, and reflected external radiation. Additionally, the temperature determined using the method described can be used to calibrate infrared imaging devices used to inspect the entire body.
Abstract:
Aspects of the invention relate to a system for assessing the condition of a thermal barrier coating on a turbine vane during engine operation. According to embodiments of the invention, one or more wires can be passed along the airfoil portion of the vane. The wires can extend over, within, or beneath the thermal coating. An electrical current can be passed along the wires, and electrical resistance can be measured across the wires. Thus, if a portion of the thermal coating becomes damaged, then the wires located in that area may break. A disconnect in the wires can lead to an increase in resistance across the wires, which can alert an operator to a problem. Some assessment systems can provide a general indication of the magnitude of damage and whether the damage is spreading.
Abstract:
A measurement device for measuring the wear of turbo-machine components to reduce the likelihood of component failure while a turbine-machine is at load. The measurement device is capable of measuring and calculating a distance between surfaces while the turbo-machine is at load. The distance may be compared with a measurement taken of the same location at another time to determine wear of a surface remote from the location of the measurement. The measurement device may be configured such that multiple measurements may be made on a single turbine engine by moving the measurement device from location to location.
Abstract:
The present invention provides a configuration where all optical parts of a monitoring system are contained within a seal and within the generator itself. Non-optical preamplifier functions may also be placed within the seal. In this configuration there is an electrical rather than optical feed-through at the generator wall, which is hermetically sealed, unlike a fiber optic feed-through. The fiber optic light source and detector for each sensor is located in the seal on the generator side of the hermetic electrical feed-through. Electrical power and the sensor's converted electrical vibration signals pass through the electrical feed-through to preamplifier circuitry on the outside of the seal where direct electrical connection is then made to a main chassis unit.