Abstract:
A method of transmitting a control signal using efficient multiplexing is disclosed. The present invention includes the steps of multiplexing a plurality of 1-bit control signals within a prescribed time-frequency domain by code division multiple access (CDMA) and transmitting the multiplexed control signals, wherein a plurality of the 1-bit control signals include a plurality of the 1-bit control signals for a specific transmitting side. Accordingly, reliability on 1-bit control signal transmission can be enhanced.
Abstract:
A method for receiving signals in a multi-carrier multiple access system is disclosed. The method comprises receiving signals from at least one base station wherein each signal has a base station identifier, processing the signals to identify each base station by using the base station identifier, performing a channel estimation using the processed signals, combining the processed signals using an information obtained from the channel estimation and decoding the combined signals. Also, an apparatus for receiving signals in a multi-carrier multiple access system comprises a serial-to-parallel converter for converting a serial signal including a base station identifier from at least one base station to parallel signals, a Fast Fourier transformer for transforming the parallel signals, a parallel-to-serial converter for converting the parallel signals to a serial signal, a despreading processor for despreading frequency domain signals using the base station identifier from at least one base station, a channel estimator for compensating a channel variation between the at least one base station and a mobile station, a signal combiner for combining signals from base stations and a decoder for decoding the combined signal.
Abstract:
A portable device, such as a mobile terminal or user equipment, for encoding uplink acknowledgments to downlink transmissions. The portable device includes a receiver configured to receive a plurality of data blocks, such that each of the data blocks include an associated cyclic redundancy check (CRC), and a processor configured to determine received status for each of the data blocks by checking the CRC of each of the data blocks. The portable device further includes a transmitter for transmitting a response sequence which indicates the received status of all of the data blocks.
Abstract:
A method of allocating channels in a user equipment is disclosed. In particular, a method of allocating a plurality of Dedicated Physical Channels (DPCHs) and Enhanced Dedicated Channels (E-DCHs) in a user equipment of a multicode transmission system. The method includes determining whether a High Speed Downlink Shared Channel (HS-DSCH) is configured for the user equipment (UE) and determining a number of codes used by the DPCH and the E-DCH. The method further includes allocating the DPCH and the E-DCH channels to an I branch or a Q branch based on the number of codes used by the DPCH and the E-DCH and the HS-DSCH configuration.
Abstract:
A method of allocating channels in a user equipment is disclosed. In particular, a method of allocating a plurality of Dedicated Physical Channels (DPCHs) and Enhanced Dedicated Channels (E-DCHs) in a user equipment of a multicode transmission system. The method includes determining whether a High Speed Downlink Shared Channel (HS-DSCH) is configured for the user equipment (UE) and determining a number of codes used by the DPCH and the E-DCH. The method further includes allocating the DPCH and the E-DCH channels to an I branch or a Q branch based on the number of codes used by the DPCH and the E-DCH and the HS-DSCH configuration.
Abstract:
A method of allocating pilot bits in a wireless communication system using a multiple carrier modulation (MCM) is disclosed. The method includes allocating a plurality of precoded data symbols precoded by a precoding matrix module and a plurality of non-precoded pilot bits to a plurality of subcarriers, and transmitting the allocated precoded data symbols and the allocated non-precoded pilot bits.
Abstract:
A method of scheduling for an Enhanced Dedicated Channel (E-DCH) in a user equipment (UE) is disclosed. More specifically, a method of receiving an information indicating an allowable transmit power range from a base station and updating a group of Transport Format Combinations (TFCs) allowed by the base station by selecting the TFCs that can be used within the allowable transmit power range. Furthermore, the method comprises transmitting the E-DCH by at least one TFC selected from the group of TFCs.
Abstract:
A method for effectively transmitting/receiving a codeword in a MIMO system is disclosed. In a system including a plurality of predetermined rank structures, a reception end transmits rank information (RI), precoding matrix index (PMI), and channel quality information (CQI) of each codeword to a transmission end. The transmission end selects a rank structure on the basis of information received from the reception end. The transmission end selects only some codeword blocks among a plurality of codeword blocks available for the selected rank structure, transmits signals via the selected codeword blocks, and transmits a null signal for the non-selected codeword blocks.
Abstract:
A method of transmitting control information includes generating a cyclically shifted sequence by cyclically shifting a base sequence by a cyclic shift amount, generating a modulated sequence based on a modulation symbol for control information and the cyclically shifted sequence, and transmitting the modulated sequence on a plurality of subcarriers, wherein available cyclic shifts of the base sequence are divided into a first part and a second part according to a type of the control information, and the first part and the second part are separated by at least one unallocated cyclic shift of the base sequence.
Abstract:
A method of transmitting a sounding reference signal (SRS) includes receiving SRS operation information including a sounding indicator, the sounding indicator indicating whether SRS transmission takes place at a subframe; generating the SRS according to the SRS operation information, and if the sounding indicator indicates occurrence of SRS transmission, transmitting the SRS at the subframe. Multiplexing can be achieved without collision between data and a sounding reference signal and single carrier characteristics required in uplink transmission can be preserved.