Abstract:
A method of operating a vehicle having an electric drive is provided. The method includes defining a first zone and a second zone. The first zone has an associated first characteristic and the second zone has an associated second characteristic that differs from the first characteristic. The method further includes switching an operating mode of a vehicle from a first operating mode in the first zone to a second operating mode in the second zone in response to the vehicle translating from the first zone to the second zone. Associated vehicles and systems are provided also.
Abstract:
An electrical generator includes a stator having fractional-slot concentrated windings and a rotor having field windings. A drive is provided having a circuit to control current flow to the field windings and a controller to input an initial DC field current demand to the circuit to cause the circuit to output an initial DC field current representative of a DC field current demand that would cause an electrical generator having sinusoidal stator windings to output a desired AC power. The controller receives feedback on the magnetic field generated by the initial DC field current, isolates an ideal fundamental component of the magnetic field based on the feedback and to generate a modified DC field current demand, and inputs the modified DC field current demand to the circuit, thereby causing the circuit to output an instantaneous non-sinusoidal current to the field windings to generate a sinusoidal rotating air gap magnetic field.
Abstract:
A method of operating a vehicle having an electric drive is provided. The method includes defining a first zone and a second zone. The first zone has an associated first characteristic and the second zone has an associated second characteristic that differs from the first characteristic. The method further includes switching an operating mode of a vehicle from a first operating mode in the first zone to a second operating mode in the second zone in response to the vehicle translating from the first zone to the second zone. Associated vehicles and systems are provided also.
Abstract:
A fraction inverter circuit includes a first energy storage device configured to output a DC voltage, a first bi-directional DC-to-AC voltage inverter coupled to the first energy storage device, and a first electromechanical device. The first electromechanical device includes a first plurality of conductors coupled to the first bi-directional DC-to-AC voltage inverter, a second plurality of conductors coupled together, and a plurality of windings coupled between the first plurality of conductors and the second plurality of conductors. The traction converter circuit also includes a charge bus comprising a first conductor coupled to the second plurality of conductors of the first electromechanical device, the charge bus configured to transmit a charging current to or receive a charging current from the first electromechanical device to charge the first energy storage device via the first electromechanical device and the first bi-directional DC-to-AC voltage inverter.
Abstract:
A distribution transformer comprises a sensor system and a communications module. The distribution transformer is configured to convert a first high voltage electricity from a high voltage distribution line to a first low voltage electricity and convey the first low voltage electricity along a low voltage line to an electrical device. The sensor system is configured to determine a temperature of the distribution transformer, and the communications module is configured to transmit a load reduction request along the low voltage line to the electrical device based on the temperature of the distribution transformer.