Abstract:
A system for performing computing operations includes a rack, one or more shelves coupled to the rack, and two or more computing modules. Each computing module may include a chassis, one or more circuit board assemblies in a primarily vertical orientation, and one or more hard disk drives in a primarily vertical orientation. The circuit board assemblies and the hard disk drives are coupled to the chassis of the computing module.
Abstract:
A virtual temperature monitoring system in a data center communicates with servers mounted in racks to receive internal temperature data generated by internal temperature sensors of the servers. The system derives a virtual sensor measurement of external temperatures external to the server, including a portion of a cold aisle that extends proximate to a rack in which the server is mounted, based upon a relationship between the received internal temperature sensors and the external environment. Sensor data from other sensors can be received via a building management system, and building management signals to the building management system can be generated based at least partially on the virtual sensor data. The virtual sensor data can be used to generate a graphical representation of the servers that highlights relative thermal characteristics of the servers based on the virtual external sensor measurements, including heat indices, excursions beyond thresholds, historical excursion histories, etc.
Abstract:
A system for cooling heat producing components in a building includes a duct coupled to a room of the building and one or more air moving devices. The duct includes a constricted section. The air moving devices move air through the constricted section of the duct such that water in the air is converted from water vapor to water droplets. The water droplets are carried downstream from the constricted section in a two-phase mixture comprising air and water.
Abstract:
Systems and methods for handling battery backup resources in a computer system differently in certain situations, such as catastrophic events, based upon an assigned layer of the datacenter components to which the battery backup resource provides backup power. The layer can be based, for example, on criticality of the resource to the system. Less critical layers can shed load or gracefully shut down to respond to the event, and the battery resources can be reallocated or reconfigured to provide battery power to the more critical layers.
Abstract:
A modular computing system for a data center includes one or more data center modules including rack computer systems. An electrical module is coupled to the data center modules and provides electrical power to computer systems in the data center modules. The data center modules do not include any internal active cooling systems and cannot be coupled with any external active cooling systems. A data center module directs ambient air to flow into intake air plenums extending along intake sides of the rows of racks, through the rows of racks into exhaust plenums extending along exhaust sides of the rows of racks, and out into the ambient environment to cool computer systems in the racks. Directed airflow can be lateral, vertical, at least partially driven by air buoyancy gradients, at least partially induced by air moving devices internal to computer systems in the rows of racks, thereof, etc.
Abstract:
A system for performing computing operations includes a rack, one or more shelves coupled to the rack, and two or more computing modules. Each computing module may include a chassis, one or more circuit board assemblies in a primarily vertical orientation, and one or more hard disk drives in a primarily vertical orientation. The circuit board assemblies and the hard disk drives are coupled to the chassis of the computing module.
Abstract:
A system for cooling heat producing components in a building includes a duct coupled to a room of the building and one or more air moving devices. The duct includes a constricted section. The air moving devices move air through the constricted section of the duct such that water in the air is converted from water vapor to water droplets. The water droplets are carried downstream from the constricted section in a two-phase mixture comprising air and water.
Abstract:
A cooling apparatus for a container-based data center comprises an air handling housing, at least one movable louver, a filter and a fan. The housing is configured for suspending from a ceiling of the container and comprises at least one heat exchanger. The louver is movable to direct air flow along different paths within the housing according to a selected operating mode. The fan is positioned in the housing and controllable according to the selected operating mode. The heat exchanger is configured in a self-contained water chilling circuit positioned within the container for use in a closed loop mode. The apparatus is convertible for use in an economizer mode that draws outside air into the container. An optional auxiliary heat exchanger element has a cold side heat exchange portion positioned outside the container and a connection through the ceiling to a hot side heat exchange portion positioned within the housing.
Abstract:
A power cable holder includes a holder body and power cable-holding portions. The power cable-holding portions couple with one or more cables. The cable-holding portions hold power plugs on the cables in a predetermined spacing and order with respect to one another. A power connector plug extraction mechanism may be operable by a user to extract the power connector plugs from corresponding power connector receptacles in a power distribution unit.
Abstract:
A method of managing power to electrical systems in a rack includes pooling power from power supply mechanisms in two or more slots of a rack. Power is supplied from the pooled power to electrical systems in one or more slots in the rack. Power supply mechanisms are activated or deactivated from the pooled power based on conditions of the power supply mechanisms or the electrical systems receiving power from the pooled power supply system.