Abstract:
A system and method for peer-to-peer communications is disclosed. A first wireless device receives a message from a second wireless device identifying communication requirements of a point-to-point communication involving the second wireless device. The first wireless device determines whether the second wireless device's communication requirements can be satisfied based on communication resources already committed for other communications. When the communication requirements of the second wireless device can be satisfied, the first wireless device generates a time sharing schedule to be used by the first and second wireless devices based on the already-committed communication requirements and the second device's communication requirements. The time sharing schedule may include a first portion for broadcast communication among a group of devices to which the first and second wireless devices belong, and a second portion for the point-to-point communications of the second wireless devices.
Abstract:
A method for receiving feedback on a quality of multicast transmissions in a Wireless Local Access Network (WLAN) including a source electronic device (e.g., an access point) and a plurality of electronic devices is disclosed, according to some embodiments. The method can include (i) transmitting a plurality of multicast packets addressed to a subset of the plurality of electronic devices by the source electronic device; (ii) concurrently polling the subset of the plurality of electronic devices by the source electronic device; and (iii) receiving a plurality of block acknowledgements (BAs) from at least the subset of the plurality of electronic devices by the source electronic device. Each BA may include information on a quality of reception of two or more multicast packets received at an electronic device.
Abstract:
Embodiments include a method, computer program product, and system for grouping electronic devices into contention groups to reduce uplink Orthogonal Frequency-Division Multiple Access (OFDMA) random access (OFDMA-RA) collisions. An access point may explicitly assign an electronic device to a contention group, or the electronic device may implicitly determine an assignment to the contention group. To explicitly assign a device to a contention group, the access point may randomly assign or assign based on a criteria of the electronic device. Examples of criteria include an association identifier (AID), a traffic type/quality of service (QoS) category, a power saving preference, and an association status. The electronic device may implicitly determine a contention group assignment based on the total number of contention groups. The electronic device may use the explicitly or implicitly assigned contention group number to determine whether the electronic device may contend for a given trigger frame random access (TF-R) frame.
Abstract:
A system, apparatus and method for synchronizing devices in a peer-to-peer communication environment. Devices select a master to facilitate their synchronization, and rendezvous according to a schedule of availability windows broadcast by the master. Devices may attend some or all of the availability windows, during which they may send and receive unicast and/or multicast messages. Individual devices conserve power by being automatically synchronized instead of having to individually discover other devices and services, and can power off their radios without sacrificing discoverability. Synchronization and peer-to-peer communication as provided herein coexists with other device demands, such as Bluetooth® operations, infrastructure-based communications and so on.
Abstract:
The disclosed embodiments provide a system that provides wireless service groups. During operation, a wireless device's advertising mechanism advertises a service group over Wi-Fi, wherein the service group comprises at least the wireless device and wherein the service group's security requirements regulate multicast protection within the service group. In response to receiving a request from a second device to be admitted into the service group, the wireless device's security mechanism admits the second device into the service group and sends the service group's security requirements to the second device, thereby enabling the second device to initialize multicast protection in accordance with the service group's security requirements.
Abstract:
In order to flexibly manage and broadcast content to electronic devices in a multicast group, a multicast group management protocol allows one or more multicast group masters to be specified. In addition to controlling membership in the multicast group, a multicast group master can define or specify a multicast session, in which content from one or more sources is broadcast to at least a subset of the electronic devices or sinks in the multicast group. The multicast group management protocol supports concurrent broadcasts of content to different multicast sessions. Moreover, the broadcasts in the different multicast sessions may have different: priorities, encoding techniques, quality-of-service policies, reliability, and/or number of parity bits. For example, the different encoding techniques may include different layers in H.264 Scalable Video Coding. Alternatively or additionally, the different number of parity bits may be associated with application layer forward error correction.
Abstract:
The disclosed embodiments provide a system that enables service-configurable wireless connections. During operation, a local service endpoint of a service runs on a wireless device. The local service endpoint sends a request to establish a datapath with another service endpoint on another device. Meanwhile, the wireless device's service discovery module discovers a remote endpoint for the service on a remote device. In response to the request, the wireless device's service-configurable security entity configures a Wi-Fi connection's security configuration, thereby enabling the local endpoint to establish a datapath between the local endpoint and the remote endpoint over the Wi-Fi connection.
Abstract:
Embodiments described herein relate to a system and method for providing flexible receiver configuration in wireless communication systems, such as 802.11 WLAN systems. In one embodiment, a wireless device may transmit a first data frame including first configuration information specifying a first configuration of the receiver to notify a remote device that the wireless device intends to configure its receiver according to the first configuration. After receiving an acknowledgement frame confirming the first configuration information, the wireless device may configure the receiver according to the first configuration. In another embodiment, a wireless device may receive a first data frame including first configuration information and further including a request that the wireless device configure its receiver according to the first configuration. In response, the wireless device may configure the receiver according to the first configuration. In either case, the wireless device may receive subsequent communications according to the first configuration.
Abstract:
A system, apparatus and method for organizing devices in a peer-to-peer communication environment. A number of devices synchronize among themselves and select masters (or synchronization stations) to organize the devices into a hierarchy. Master devices have associated preference values reflecting their preference or suitability to be a master device, and broadcast synchronization frames to keep devices synchronized. When multiple devices in one or more hierarchies execute a common application or service, they form a private group to exchange or share data (e.g., play a game, transfer a file). All devices in the hierarchy maintain and advertise a public or default identifier of the hierarchy, and all devices in the private group maintain and advertise a private identifier specific to the group. Members of the group synchronize under a top group master (or root sync station), which synchronizes with a master that is part of the hierarchy.
Abstract:
One or more wireless stations operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations, i.e., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to reciprocating service between two or more wireless stations. The reciprocating service embodiments described herein provide a mechanism through which devices can participate in a same service instant.