Abstract:
A system, apparatus and method for selecting master devices in a peer-to-peer communication environment. Devices select a master to facilitate their synchronization, and rendezvous according to a schedule of availability windows broadcast by the master as part of periodic synchronization frames. Devices capable of serving as master advertise their selection metrics, which are converted into a master preference value by a selection algorithm applied uniformly by all devices in the environment. Individual devices may identify the best local master and synchronize to it, yielding a cluster of synchronized peers. Clusters may then be synchronized to masters at further range. Individual devices conserve power by being automatically synchronized instead of having to individually discover other devices and services, and can power off their radios without sacrificing discoverability. Synchronization and peer-to-peer communication as provided herein coexists with other device demands, such as Bluetooth® operations, infrastructure-based communications and so on.
Abstract:
A system, apparatus and method for synchronizing devices in a peer-to-peer communication environment. Devices select a master to facilitate their synchronization, and rendezvous according to a schedule of availability windows broadcast by the master. Devices may attend some or all of the availability windows, during which they may send and receive unicast and/or multicast messages. Individual devices conserve power by being automatically synchronized instead of having to individually discover other devices and services, and can power off their radios without sacrificing discoverability. Synchronization and peer-to-peer communication as provided herein coexists with other device demands, such as Bluetooth® operations, infrastructure-based communications and so on.
Abstract:
A system, apparatus and method for synchronizing devices in a peer-to-peer communication environment. Devices select a master to facilitate their synchronization, and rendezvous according to a schedule of availability windows broadcast by the master. Devices may attend some or all of the availability windows, during which they may send and receive unicast and/or multicast messages. Individual devices conserve power by being automatically synchronized instead of having to individually discover other devices and services, and can power off their radios without sacrificing discoverability. Synchronization and peer-to-peer communication as provided herein coexists with other device demands, such as Bluetooth® operations, infrastructure-based communications and so on.