Abstract:
A spectrometer apparatus for determining an optical characteristic of an object or material is disclosed. A probe is positionable to be in proximity to the object or material. First and second receivers are provided on the probe. Light from one or more first receivers is coupled to one or more first optical sensors via a spectral separation implement. Light from one or more second receivers is coupled to one or more second sensors without spectral separation of the light. A light source provides light to the object or material via the probe. A processor coupled to receive one or more signals from the first and second sensors determines the optical characteristic of the object or material and determines a physical position property of the probe with respect to the object or material or a non-color optical property of the object or material. The physical position property may be a distance or angular position of the probe with respect to a surface of the object or material. The non-color optical property may be translucence, gloss, gray level and/or surface texture.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient database. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Preferably, a two stage spectral separation is utilized, preferably utilizing a diffraction grating and interference filters.
Abstract:
Optical characteristic measuring systems and methods for determining the color or other optical characteristics of teeth comprising a probe body (2) wherein the probe provides light to the surface of the object (20). Perimeter receiver fiber optics (102) are spaced apart from a source fiber optic and receive light from the surface of the object (20) being measured. Light from the perimeter fiber optics passes to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured wherein the numerical apertures of the receiver fiber optics are different.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Preferably, a two stage spectral separation is utilized, preferably utilizing a diffraction grating and interference filters.
Abstract:
Color measuring systems and methods are disclosed. Perimeter receiver fiber optics are spaced apart from a central source fiber optic and receive light reflected from the surface of the object being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention.
Abstract:
A picture frame and accompanying audio message circuit is provided such that one or more desired audio messages stored in the audio message circuit associated with one or more display pictures can be played upon the touching of the pictures or the frame, or in response to a voice recognition device sensing an audio command associated with the particular audio message and/or pictures. When audio message playback is desired, a switch on the frame or under a protective cover for the picture is activated by touching, or a position sensitive device may be used to sense whether a particular position on the picture has been touched. Digital or analog information representing the desired audio message is retrieved from a memory device, which is subsequently transmitted to a speaker which produces the desired audio message perceptible to a human. In other embodiments, multiple picture and multiple messages are provided such that the user can touch a particular picture, or the switch associated with that picture, and an audio message corresponding to the picture is then played through the speaker. In still other embodiments, a system is provided with a plurality of pictures mounted in the perimeter faces of a cube or other geometrical shape, each picture having associated with it a switch for activating a message or plurality of messages. In still other embodiments, a position sensitive device or a voice recognition device is utilized to initiate audio message playback.
Abstract:
Color/optical characteristics measuring systems and methods are disclosed. Perimeter receiver fiber optics/elements (7) are spaced apart from a central source fiber optic/element (5) and received light reflected from the surface of the object (20) is measured. Light from the perimeter fiber optics (7) pass to a variety of filters. The system utilizes the perimeter receiver fiber optics (7) to determine information regarding the height and angle of the probe (1) with respect to the object (20) being measured. Under processor control (20), the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe (1) may have a removable or shielded tip for contamination prevention.
Abstract:
A picture frame and accompanying audio message circuit is provided such that one or more desired audio messages stored in the audio message circuit associated with one or more display pictures can be played upon the touching of the pictures or the frame. When audio message playback is desired, a switch on the frame or under a protective cover for the picture is activated by touching. Under CPU control, digital information representing the desired audio message is retrieved from a memory device, which is subsequently converted to an analog signal and transmitted to a speaker which produces the desired audio message perceptible to a human. In other embodiments, multiple picture and multiple messages are provided such that the user can touch a particular picture, or the switch associated with that picture, and an audio message corresponding to the picture is then played through the speaker. In still other embodiments, a system is provided with a plurality of pictures mounted in the perimeter faces of a cube or other geometrical shape, each picture having associated with it a switch for activating a message or plurality of messages.