摘要:
Three dimensional optical structures are described that can have various integrations between optical devices within and between layers of the optical structure. Optical turning elements can provide optical pathways between layers of optical devices. Methods are described that provide for great versatility on contouring optical materials throughout the optical structure. Various new optical devices are enabled by the improved optical processing approaches.
摘要:
Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
摘要:
Manganese oxide particles have been produced having an average diameter less than about 500 nm and a very narrow distribution of particle diameters. Methods are described for producing metal oxides by performing a reaction with an aerosol including a metal precursor. Heat treatments can be performed in an oxidizing environment to alter the properties of the manganese oxide particles.
摘要:
An aerosol delivery apparatus is used to deliver an aerosol into a reaction chamber for chemical reaction to produce reaction products such as nanoparticles. A variety of improved aerosol delivery approaches provide for the production of more uniform reaction products. In preferred embodiments, a reaction chamber is used that has a cross section perpendicular to the flow of reactant having a dimension along a major axis greater than a dimension along a minor axis. The aerosol preferably is elongated along the major axis of the reaction chamber.
摘要:
Batteries with high energy and high capacity are described that have a long cycle life upon cycling at a moderate discharge rate. Specifically, the batteries may have a room temperature fifth cycle discharge specific energy of at least about 175 Wh/kg discharged at a C/3 discharge rate from 4.2V to 2.5V. Additionally, the batteries can maintain at least about 70% discharge capacity at 1000 cycles relative to the fifth cycle, with the battery being discharged from 4.2V to 2.5V at a C/2 rate from the fifth cycle through the 1000th cycle. In some embodiment, the positive electrode of the battery comprises a lithium intercalation composition with optional metal fluoride coating. Stabilizing additive maybe added to the electrolyte of the battery to further improve the battery performance. The batteries are particularly suitable for use in electric vehicles.
摘要:
Batteries with particularly high energy capacity and low internal impedance have been described herein. The batteries can exhibit extraordinary long cycling with acceptable low amounts of fade. Pouch batteries using high specific capacity lithium rich metal oxide as positive electrode material combined with graphitic carbon anode can reach an energy density of at least about 180 Wh/kg at a rate of C/3 from 4.35V to 2V at room temperature while having a room temperature areas specific DC resistance of no more than about 75 ohms-cm2 at 20% SOC based on a full charge to 4.35V. High specific capacity lithium rich metal oxide with specific stoichiometry ranges used in these batteries are disclosed.
摘要:
A durable wear-resistant coating consists of an atomically mixed layer on the surface of the head or media which is developed by bombardment of the surface with energetic C ions with optimized parameters. This mixed layer is covered with a hard DLC overcoat. This mixed interlayer is able to strongly bond the overcoat to the head or media substrate and improve the tribological properties of the overcoat. In this method a very thin layer of a carbide former material can be used as an interlayer before bombarding the surface with C ions which provides a composite interlayer containing C and species from interlayer and substrate. This composite interlayer bonds the DLC overact to the ceramic substrate of the head or the metallic substrate of the media. This interlayer by itself is protective enough to protect the head media of the hard drives against wear and corrosion.
摘要:
Lithium ion secondary batteries are described that have high total energy, energy density and specific discharge capacity upon cycling at room temperature and at a moderate discharge rate. The improved batteries are based on high loading of positive electrode materials with high energy capacity. This capability is accomplished through the development of positive electrode active materials with very high specific energy capacity that can be loaded at high density into electrodes without sacrificing performance. The high loading of the positive electrode materials in the batteries are facilitated through using a polymer binder that has an average molecular weight higher than 800,000 atomic mass unit.
摘要:
Three dimensional optical structures are described that can have various integrations between optical devices within and between layers of the optical structure. Optical turning elements can provide optical pathways between layers of optical devices. Methods are described that provide for great versatility on contouring optical materials throughout the optical structure. Various new optical devices are enabled by the improved optical processing approaches.
摘要:
Batteries with particularly high energy capacity and low internal impedance have been described herein. The batteries can exhibit extraordinary long cycling with acceptable low amounts of fade. Pouch batteries using high specific capacity lithium rich metal oxide as positive electrode material combined with graphitic carbon anode can reach an energy density of at least about 180 Wh/kg at a rate of C/3 from 4.35V to 2V at room temperature while having a room temperature areas specific DC resistance of no more than about 75 ohms-cm2 at 20% SOC based on a full charge to 4.35V. High specific capacity lithium rich metal oxide with specific stoichiometry ranges used in these batteries are disclosed.