Abstract:
A semiconductor memory device has a memory cell array, a first transistor of a first conductivity type, a second transistor of a second conductivity type and a third transistor of the first conductivity type. A source or drain of the first transistor is connected to each of word lines. A drain of the second transistor is connected to a gate of the first transistor. A source of the third transistor is connected to the gate of the first transistor. The gates of the second transistor and the third transistor are not connected, a source of the second transistor is not connected to a drain of the third transistor, and the gate of the second transistor and the drain of the third transistor have different voltage levels corresponding to opposite logic levels each other.
Abstract:
A non-volatile semiconductor memory device includes a memory cell array with electrically rewritable non-volatile memory cells laid out therein, an address selector circuit for performing memory cell selection of the memory cell array, a data read/write circuit arranged to perform data read of the memory cell array and data write to the memory cell array, and a control circuit for executing a series of copy write operations in such a manner that a data output operation of from the data read/write circuit to outside of a chip and a data write operation of from the data read/write circuit to the memory cell array are overlapped each other, the copy write operation including reading data at a certain address of the memory cell array into the data read/write circuit, outputting read data held in the read/write circuit to outside of the chip and writing write data into another address of the memory cell array, the write data being a modified version of the read data held in the data read/write circuit as externally created outside the chip.
Abstract:
There is provided a semiconductor memory device, which realizes rewriting of data in the memory cell by applying a potential difference between the gate and the source, or applying a potential difference between the gate and the drain, which is larger than the power supply voltage. This semiconductor memory device is provided with a source line potential control circuit configured to control the source line potential. The source line potential control circuit sets the source line potential at the time of the mode for programming “1” data in a plurality of blocks in one package to a level lower than at the normal data programming mode.
Abstract:
A semiconductor memory device comprises memory cells, a bitline connected to the memory cells, a read circuit including a precharge circuit, and a first transistor connected between the bitline and the read circuit, wherein a first voltage is applied to a gate of the first transistor when the precharge circuit precharges the bitline, and a second voltage which is different from the first voltage is applied to the gate of the first transistor when the read circuit senses a change in a voltage of the bitline.
Abstract:
A pharmaceutical agent having an anti-HIV action, particularly, a pharmaceutical agent having an integrase inhibitory action, is provided. The present invention relates to a quinolizinone compound represented by the following formula [I] wherein each symbol is as defined in the specification, a pharmaceutically acceptable salt thereof, and an anti-HIV agent containing same as an active ingredient. The compound of the present invention has an HIV integrase inhibitory action and is useful as an anti-HIV agent for the prophylaxis or therapy of AIDS. Moreover, by a combined use with other anti-HIV agents such as protease inhibitors, reverse transcriptase inhibitors and the like, the compounds can become a more effective anti-HIV agent. Since the compound has a high inhibitory activity specific for integrases, the compound can provide a safe pharmaceutical agent for human with a fewer side effects.
Abstract:
An address structure in mobile communications network facilitating routing of a packet. At the initial position of the address, is located a prefix or the like indicating the type of the address structure, which indicates the present mobile communications network system, for example. At the next position, a location address (LA) is located characterizing the present invention. The location address is usually placed at the position of a subnetwork address. The location address (LA) is provided for each mobile switching system, and constitutes part of an IP address of a user using a mobile station under the control of the mobile switching system. At the final position, is located a user identifier (user ID) which is used for identifying a user, and is provided uniquely for each user. The IP address in accordance with the present invention can be split into the foregoing three sections, part of which includes the location address and user identifier indicating the location of the mobile station in the mobile communications network, thereby enabling the identification of the user in the mobile communications network system and the control of the packet transmission.
Abstract:
A semiconductor device of this invention includes a first circuit for initializing a predetermined circuit in accordance with the level of a power source voltage, a second circuit for controlling the output from the first circuit by activation or deactivation, and an activation control circuit for activating or deactivating the second circuit in accordance with external input.
Abstract:
A semiconductor memory device capable of preventing occurrence of a defect caused by a lowering in the etching precision in an end area of the memory cell array and realizing an inexpensive chip having high operation reliability and high manufacturing yield is provided. A first block is constructed by first memory cell units each having a plurality of memory cells connected, a second block is constructed by second memory cell units each having a plurality of memory cells connected, and the memory cell array is constructed by arranging the first blocks on both end portions thereof and arranging the second blocks on other portions thereof. The structure of the first memory cell unit on the end side of the memory cell array is different from that of the second memory cell unit. Wirings for connecting the selection gate lines of the memory cell array to corresponding transistors in a row decoder are formed of wiring layers formed above wirings for connecting control gate lines of the memory cell array to the transistors in the row decoder. By use of the semiconductor memory device, occurrence of a defect caused by a lowering in the etching precision in an end area of the memory cell array can be prevented, and the manufacturing yield can be made high and the operation reliability can be made high without substantially increasing the chip size.
Abstract:
A semiconductor memory device comprises a memory cell array and a sense amp circuit. The memory cell array includes bit lines connected to memory cells operative to store first logic data and second logic data smaller in cell current than the first logic. The sense amp circuit has a clamp transistor operative to clamp a bit line voltage. The sense amp circuit is operative to detect data in a selected memory cell via the clamp transistor and the bit line. The sense amp circuit is operative to read data from the selected memory cell in at least the two of first and second read cycles while a control voltage is applied to a gate of the clamp transistor. Different control voltages are applied to the gate of the clamp transistor in the first and second read cycles.
Abstract:
The throttle position corresponding to the rotational angle of the throttle valve is calculated based on electric signals output from a rotor position detector constituted by three Hall ICs that detect the rotational position of a magnet rotor of a brushless DC motor. A valve position control quantity of the throttle valve is so calculated as to eliminate the difference between the thus calculated valve position and a target valve position. The motor current control quantity of the brushless DC motor is so determined as to eliminate the difference between the calculated valve position and the target valve position. Though the throttle position sensor is omitted, the electric signals output from the rotor position detector are used for calculating both the valve position control quantity and the motor current control quantity.