Abstract:
Disclosed is a fully automatic bar code reading system having at least one automatic (i.e., triggerless) portable bar code symbol reading device, and an associated base unit positioned within the data transmission range thereof without a physical wiring connection thereto. After each successful reading of a bar code symbol, the bar code symbol reading device automatically produces symbol character data representative of the decoded bar code symbol, synthesizes a group of data packets each containing the symbol character data, and then transmits the synthesized group of data packets to the base unit. Upon the successful receipt of one of the transmitted data packets and the recovery of symbol character data therefrom, the base unit generates an acoustical acknowledgement signal that is perceptible to the user of the bar code symbol reading device and indicates the transmitted symbol character data has been successfully received. In typical applications, a plurality of such bar code systems are used in physical proximity with each other, such as in conventional retail point-of-purchase (POS) environments. In accordance with the present invention, radio frequency (RF) carrier signals of the same frequency are used by each hand-supportable bar code symbol reading device to transmit groups of data packets to respective base units. Data packet interference at each base unit is minimized during data packet reception by using a novel data packet transmission scheme. In accordance therewith, each bar code symbol reading device transmits the data packets in each of its data packet groups with a unique time delay imposed therebetween, thus creating data packet transmission "slots" or "windows" on the time domain, during which other groups of data packets may be transmitted from neighboring bar code symbol reading devices and received at their respective base units.
Abstract:
A fully automatic bar code symbol reading system comprising an automatic (i.e., triggerless) portable bar code symbol reading device with an omnidirectional projection laser scanning engine mounted within the head portion of its hand-supportable housing, and an associated base unit positioned within the data transmission range thereof without a physical wiring connection thereto. The hand-supportable bar code symbol reading device produces a narrowly confined scanning volume for omnidirectional scanning of code symbols presented therein, while preventing unintentional scanning of code symbols on nearby objects located outside thereof.
Abstract:
A fully automatic bar code symbol reading system having at least one automatic portable bar code symbol reading device, and an associated base unit positioned within the data transmission range thereof without a physical wiring connection thereto. After each successful reading of a bar code symbol, the bar code symbol reading device automatically produces symbol character data representative of the decoded bar code symbol, synthesizes a group of data packets each containing the symbol character data, and then transmits the synthesized group of data packets to the base unit. Upon the successful receipt of one of the transmitted data packets and the recovery of symbol character therefrom, the base unit generates an acoustical acknowledgment signal that is perceptible to the user of the bar code symbol reading device and indicates the transmitted symbol character data has been successfully received. In typical applications, a plurality of such bar code systems are used in physical proximity with each other, such as in conventional retail point-of-purchase environments. In accordance with the present invention, radio frequency carrier signals of the same frequency are used by each hand-supportable bar code symbol reading device to transmit groups of data packets to respective base units. Data packet interference at each base unit is minimized during data packet reception by using a novel data packet transmission scheme.
Abstract:
An automatic bar code symbol reading system comprising components for carrying out object detection, scanning, photoreceiving, A/D conversion, bar code presence detection, symbol decoding, data format conversion, data storage and data transmission functions. In general, the bar code symbol reading device includes a control system having a plurality of control centers that control the operation of the system components in accordance with preselected system control operations. Each of the control centers are responsive to control activation signals generated by certain of the system components upon the occurrence of predefined conditions. Certain of the control centers are capable overriding other control centers to provide diverse control capabilities which facilitates execution of intelligent operations and power consumption, during bar code symbol reading.
Abstract:
An automatic bar code symbol reading system comprising components for carrying out object detection, scanning, photoreceiving, A/D conversion, bar code presence detection, symbol decoding, data format conversion, data storage and data transmission functions. In general, the bar code symbol reading device includes a control system having a plurality of control centers that control the operation of the system components in accordance with preselected system control operations. Each of the control centers are responsive to control activation signals generated by certain of the system components upon the occurrence of predefined conditions. Certain of the control centers are capable overriding other control centers to provide diverse control capabilities which facilitates execution of intelligent operations and power consumption, during bar code symbol reading.
Abstract:
A fully automatic bar code symbol reading system having an hand-supportable laser bar code reading device which can be used in either an automatic hands-on mode of operation, or in an automatic hands-free mode of operation. The system includes a scanner support frame for supporting the hand-supportable device in a user-selected mounting position, and permits complete gripping of its handle portion prior to its use in the hands-on mode of operation. In general, the hand-supportable bar code reading device has long-range and short-range modes of object detection, bar code presence detection and bar code symbol reading. The long-range mode is automatically selected when the hand-supportable bar code reading device is placed within the scanner support stand during the automatic hands-free mode of operation. Whenever the hand-supportable bar code reading device is picked up from the support stand and used in its hands-on mode of operation, the short-range mode is automatically selected to provide CCD-like scanner emulation. The bar code symbol reading system of the present invention can be used in several different mounting arrangements at point-of-sale stations.
Abstract:
A laser scanning bar code symbol reading system for scanning and reading poor quality or damaged bar code symbols. The system includes a housing having a light transmission window; an extremely-elongated laser beam production module for producing an extremely-elongated laser beam having (i) a direction of propagation extending along a z reference direction, (ii) a height dimension being indicated by the y reference direction, and (iii) a width dimension being indicated by the x reference direction, where x, y and z directions are orthogonal to each other. Each extremely-elongated laser beam is characterized by an elongation ratio (ER) that is defined as Y/X>4.5 for any point within the working range of the laser scanning bar code symbol reading system, extending along the z direction; where (i) Y indicates the beam height of the extremely-elongated laser beam measured in the Y reference direction, and X indicates the beam width of the extremely-elongated laser beam measured in the X reference direction, and (iii) the beam height (Y) and the laser beam width (X) are measured at 1/e2 intensity clip level. A laser scanning mechanism is provided for scanning the extremely-elongated laser beam out the light transmission window and across a scanning field defined external to the housing, in which a bar code symbol is present for scanning by the extremely-elongated laser scanning beam.
Abstract:
A digital image capture and processing system includes a housing having an imaging window with an illumination-focusing lens structure integrated therewithin. A printed circuit (PC) board is mounted in the housing and has a front surface, a rear surface, and a light transmission aperture spatially aligned with the imaging window. An area-type image detection array is mounted on the rear surface of the PC board. A linear array of light emitting diodes (LEDs) is mounted on the front surface of the PC board, adjacent the light transmission aperture and aligned with the illumination-focusing lens structure. The LEDs produce a plurality of illumination beams which are transmitted through the illumination-focusing lens structure to generate a field of illumination that is projected within the FOV of the system. Illumination reflected and/or scattered off an object within the FOV is retransmitted through the imaging window and the light transmission aperture, and detected by the area-type image detection array.
Abstract:
A digital image capture and processing system including a housing having an imaging window; and an image formation and detection subsystem with an area-type image detection array having a periodic snap shot mode of the operation supporting the periodic occurrence of snap-shot type image acquisition cycles at a high-repetition rate, during object illumination and imaging operations. The system also includes an illumination subsystem, with a LED illumination array, for producing a field of illumination within the FOV, and illuminating the object detected in the FOV. In the illustrative embodiment, the time duration of illumination of an object within the FOV by the illumination subsystem while the area-type image detection array detects each 2D digital image frame of the object formed on the area-type image detection array, is substantially equal to the time duration that the digital image processing subsystem is allowed to process the detected 2D digital image frame and read a 1D and/or 2D code symbol graphically represented therein.
Abstract:
A method of capturing processing digital images of an object, using a hand-supportable digital image capture and processing system having a trigger switch, an imaging window and a field of view (FOV) projected therethrough and onto an area-type image detection array. The method involves automatically detecting an object within the FOV, and generating a first trigger event indicative of automatic object detection within the FOV. In response to the generation of the first trigger event signal, the object targeting illumination subsystem automatically generates and projects a visible targeting illumination beam within the FOV. The human operator aligns the visible targeting illumination beam with the object in the FOV, and then manually actuates the trigger switch to generate a second trigger event signal. In response to the generation of the second trigger event signal, a field of illumination is automatically generated and projected through the imaging window and within the FOV, while the targeting illumination beam is momentarily ceased, and 2D digital images of the object are formed and detected on the area-type image detection array, and one or more of the detected 2-D digital images are captured, buffered and processed, so as to read one or more 1D and/or 2D code symbols graphically represented in the one or more detected 2D digital images.