Abstract:
A linear alternator to supply the electrical utility needs of homes and small businesses comprises a radial arrangement of five cylinders around a common crankshaft. Mechanical input power is applied to the crankshaft for conversion to electrical output power. Each of the five radial cylinders is in itself a single linear alternator in which four sets of equally spaced shuttle magnets are arranged head-to-toe and separated by spacers and insulators. The shuttle magnets are mounted as an assembly on a rod independently driven by the crankshaft such that each of five rods can correspondingly move back and forth inside four matching sets of equally spaced pickup coils. Alternating currents from each of the twenty total pickup coils are individually rectified, filtered, and regulated to charge banks of batteries or ultra-capacitors. Solid-state inverters can be connected to the batteries or ultra-capacitors to produce utility grade AC power, or DC power outputs can be tapped directly.
Abstract:
A power regulation system for an electrical grid has a store of electrical energy connected through a first switch to a source of electrical energy. The response time of the store is faster than that of the source. A second switch is connected to the store at one side with the opposite side for connection to the grid. A first controller monitors energy stored in the store and energy available from said source and selectively controls the first switch to close to transfer energy from the source to the store. A second controller monitors energy stored in said store and, on receiving an indication that additional energy is needed in the grid, if the energy stored in the store exceeds a supply threshold, controls the second switch to close to transfer energy from the store to the grid.
Abstract:
A power regulation system for an electrical grid has a store of electrical energy connected through a first switch to a source of electrical energy. The response time of the store is faster than that of the source. A second switch is connected to the store at one side with the opposite side for connection to the grid. A first controller monitors energy stored in the store and energy available from said source and selectively controls the first switch to close to transfer energy from the source to the store. A second controller monitors energy stored in said store and, on receiving an indication that additional energy is needed in the grid, if the energy stored in the store exceeds a supply threshold, controls the second switch to close to transfer energy from the store to the grid.
Abstract:
A method and system for reducing power output rate change variability. A photovoltaic power output is received from a photovoltaic array. The rate of change of the photovoltaic power output is measured. An auxiliary power source output is adjusted to limit a plant power output rate of change to within a power output rate change band when combined with the photovoltaic power.
Abstract:
An energy storage system, more particularly to a power distribution system for providing power for an indeterminate period of time. The power distribution system comprises means for converting the energy from an alternator to AC/DC circuits. The alternator transmits electric current to a battery, where an inverter is electrically connected to the battery and transmits AC power to low-load circuits. A DC control panel is connected to the battery and transmits electric current from the battery to low-load DC circuits. The power system is part of a portable toolbox. The system is connected to a vehicle's charging system or any mechanism having a alternator a first battery an engine and a starting system an would continually recharge it self. The battery for the system is connected to the alternator of a vehicle and or mechanism through an isolator, or connected directly to the alternator or battery of the vehicle and or mechanism and would transmit a direct electric current to the battery for the system which stores the charge. The inverter is electrically connected to the battery for the system and transmits an electric current from the battery to one or more low-load circuits.
Abstract:
In a cycloconverter generator equipped with an AC power generator that generates single-phase AC power to be supplied to a load by turning on positive and negative switching elements at variable timing every half-period of a desired AC power frequency based on a phase signal and a DC power generator that generates DC power by turning on the positive switching elements in accordance with a timing determined by desired DC voltage, there is installed with a selection switch that is installed to be operable by an user and produces an output indicative of a result of the user's selection between the AC power and DC power thereby enabling to the user to easily select either one of alternating current and direct current.
Abstract:
This disclosure relates to transient energy systems for supplying power to a load substantially instantaneously on demand. Transient energy systems may include a flywheel coupled the rotor of an induction motor generator. One embodiment of the disclosure refers to systems and methods for reducing loads on a bearing in a transient energy system. In another embodiment, the disclosure refers to an induction motor generator that is optimized for high power transient power generation, yet low power motor operation. Yet another embodiment of the disclosure refers to using a flywheel as a drag pump to cool components of a transient energy system. In yet another embodiment, a slip control scheme is discussed for regulating a DC bus. In yet a further embodiment of the disclosure a method is provided for reducing unnecessary turbine starts by making turbine start a function of the rotational velocity of a flywheel.
Abstract:
Systems and methods for adjusting outputs of dynamoelectric devices, such as alternators, are provided. The outputs of the dynamoelectric devices may be balanced to facilitate load sharing among the devices. The outputs may be balanced by monitoring field signals associated with the dynamoelectric devices and controlling the field voltages of the devices. The outputs may also be adjusted to supply the load in dissimilar proportions.
Abstract:
A wind powered turbine with low voltage ride-through capability. An inverter is connected to the output of a turbine generator. The generator output is conditioned by the inverter resulting in an output voltage and current at a frequency and phase angle appropriate for transmission to a three-phase utility grid. A frequency and phase angle sensor is connected to the utility grid operative during a fault on the grid. A control system is connected to the sensor and to the inverter. The control system output is a current command signal enabling the inverter to put out a current waveform, which is of the same phase and frequency as detected by the sensor. The control system synthesizes current waveform templates for all three-phases based on a sensed voltage on one phase and transmits currents to all three-phases of the electrical system based on the synthesized current waveforms.
Abstract:
An electric power system includes a variable speed generator driven by an engine and an electrical energy storage device. The generator and the storage device are coupled to a variable voltage DC bus. An inverter converts DC electricity from the DC bus to AC electricity for one or more electrical loads. A detector is included to monitor electric current provided to the DC bus by the storage device and provide a corresponding signal. Control circuitry is responsive to this signal to regulate power output from the storage device to the DC bus.