Abstract:
An anti-bounce dampener assembly for dampening the closing impact force between vacuum interrupter contacts. The dampener assembly includes a dampening spring positioned within a contact adapter, a guide tube extending through the contact adapter and the spring, where the guide tube is coupled to a fixed contact stem, and a bolt extending through the guide tube and being rigidly secured to the fixed contact stem. An impact force caused when the vacuum interrupter contacts contact each other when the vacuum interrupter is closed causes the fixed contact stem, the guide tube, the bolt and the vacuum interrupter to move against the bias of the spring and dampen the impact force. A flexible strap is electrically coupled to the fixed contact stem and the contact adapter, and flexes when the stem moves so as to maintain electrical coupling between the fixed contact stem and the contact adapter.
Abstract:
The invention relates to a vacuum switch, especially a vacuum circuit breaker, for medium and high voltages, comprising a mobile switch unit arranged inside a vacuum switch compartment (1) and provided with mutually mobile elements including a contact tappet (17), an insulator (18), and a driving or switching rod (11) introduced into the vacuum switch compartment (1) by means of metal bellows. Said vacuum switch also comprises a fixed contact inserted into the housing of the vacuum switch compartment (1). The upper end of the insulator (18) is fixed to the contact tappet (17), and the lower end of the insulator (18) is fixed to the driving or switching rod (11). The contact tappet (17) is connected to a conductor (8) by a flexible, electroconductive connection (20), said conductor being electroconductively connected to at least one laterally arranged output contact (6). The aim of the invention is to enable a simplified, more economical and improved design of a flexible conductive connection to the output contact. To this end, the inner cross-sectional surface of the vacuum switch compartment (1) is covered, at the level of the at least one output contact (6), around the contact tappet (17), by film-type or plate-type electroconductive covering elements (26) which are arranged over each other in layers and at least partially cover each other.
Abstract:
An improved vacuum interrupter is disclosed. The vacuum interrupter includes end covers having a curved or looped portion, which serves to connect a coil segment of the vacuum interrupter to a ceramic envelope of the vacuum interrupter, and thereby help maintain a vacuum seal for the interrupter. The curved portion acts as a spring when the vacuum interrupter is exposed to heat, thereby absorbing any expansion or contraction in the length of the vacuum interrupter due to the heating or cooling. The curved portion also protects an end of the ceramic envelope from any build-up of metallic arcing products and eliminates the need for elaborate fixturing during assembly. Additionally, a guide may be affixed to the end cover, the guide having ears which ride in a slot in a moving rod of the vacuum interrupter, to thereby prevent a twisting of a bellows of the interrupter during a brazing process. Thus, no elaborate fixturing is necessary to prevent this twisting.
Abstract:
A pair of separable disc shaped electrodes for a vacuum circuit breaker, each including an annular contact part formed around the outer circumferential portion of the electrode on the facing surface to the other electrode, a round recessed part formed on the inner portion thereof and surrounded by the annular contact part, an elastic support plate placed on the non-facing surface thereof and three straight grooves extending from the outer periphery of the annular contact part to the inner periphery thereof so that arcing on the round recessed part is prevented during a circuit breaking operation of the vacuum circuit breaker.
Abstract:
The invention relates to a vacuum switch, especially a vacuum circuit breaker, for medium and high voltages, comprising a mobile switch unit arranged inside a vacuum switch compartment (1) and provided with mutually mobile elements including a contact tappet (17), an insulator (18), and a driving or switching rod (11) introduced into the vacuum switch compartment (1) by means of metal bellows. Said vacuum switch also comprises a fixed contact inserted into the housing of the vacuum switch compartment (1). The upper end of the insulator (18) is fixed to the contact tappet (17), and the lower end of the insulator (18) is fixed to the driving or switching rod (11). The contact tappet (17) is connected to a conductor (8) by a flexible, electroconductive connection (20), said conductor being electroconductively connected to at least one laterally arranged output contact (6). The aim of the invention is to enable an improved embodiment of the switching and contact surfaces. To this end, the fixed contact (16) and the contact tappet (17) respectively comprise a switching contact part (14a, 14b) comprising an outer switching and contact surface (29) and an inner switching and contact surface (30) that can be moved in relation to the outer surface.
Abstract:
The invention relates to a contact arrangement for a vacuum switch tube for low-voltage power switches. The aim of the invention is to reduce the contact force required to control short circuit currents. To this end, a twin-contact contact arrangement is used wherein every contact comprises a plurality of separate individual contacts having a defined spring rate. At least one of the contact bodies (4) is configured as a two-layer spiral contact with a lower layer consisting of a highly elastic material and an upper layer (7) consisting of a highly electroconductive material. A contact coat (9) consisting of a contact material is provided on the upper layer in the outer zone of every contact arm (10).
Abstract:
A vacuum interrupter includes end covers having a curved or looped portion, which serves to connect a coil segment of the vacuum interrupter to a ceramic envelope of the vacuum interrupter, and thereby help maintain a vacuum seal for the interrupter. The curved portion acts as a spring when the vacuum interrupter is exposed to heat, thereby absorbing any expansion or contraction in the length of the vacuum interrupter due to the heating or cooling. The curved portion also protects an end of the ceramic envelope from any build-up of metallic arcing products and eliminates the need for elaborate fixturing during assembly. Additionally, a guide may be affixed to the end cover, the guide having ears which ride in a slot in a moving rod of the vacuum interrupter, to thereby prevent a twisting of a bellows of the interrupter during a brazing process. Thus, no elaborate fixturing is necessary to prevent this twisting.
Abstract:
An improved vacuum switch has slotted, flexible, discus-shaped contact discs attached to the current carrying contact bolts. In the open circuit case, a gap exists between each contact bolt and its corresponding contact disc and between the two discs. In the closed circuit case, the contact bolts drive the contact discs against one another, slightly deforming the contact discs, resulting in a low resistance current path. As the switch starts to open, the contact bolts first separate from the adjacent disc surfaces. As the switch opens further, any arc that ignites exists only between the contact discs. Tangential slots in the contact discs guide the arc toward the center of the contact discs. The flexible discs assume their previous undistorted shape when the switch has opened.
Abstract:
A vacuum type circuit interrupter is provided having a contact structure comprising separable mating contacts. The contact structure is constructed so that the mating contacts close on a first material and open on a second material. The first material on which the mating contacts close is made from weld free material so that contact welding does not occur when the vacuum interrupter is closed. The second material on which the contacts open, possesses good contact opening characteristics and interrupting that is, opening of the contacts will occur without excess current chopping.