Abstract:
The invention relates to a drive device for a switching tube with a fixed and movable contact part, said movable contact part being controlled by a plastic switch rod (SS) which remains substantially unstressed when the contact parts are connected or disconnected and the force of the contact spring (KF) when the contact parts are connected is approximately fully exerted on the movable contact part of the switching tube. The actuating lever and the pendulum lever are replaced by drive levers (AH, AHnull) having a triangular contour and which are fitted with a pivoting rotational bearing (SL . . . ) in each corner area, said drive levers (AH . . . ) being provided with a centrical pivoting bearing (SLm) for receiving the rotationally mounted contact spring (KF) and the centrical pivoting rotational bearing (SLm) between an upper pivoting rotational bearing (Slo) connected to the switch rod (SS) and a lower pivoting rotational bearing (SLu) connected to the drive (AT) of the movable contact part and the contact spring (KF) is mounted on one side in a fixed spherical cap guide (KG). The contact pressure force for the drive (AT) of the movable contact part can be regulated by altering the active path length of the contact spring (KF). The active path length of the contact spring can be continuously adjusted by a regulating screw (RS) which is accessible from the outside.
Abstract:
A recloser for use with an electrical power distribution system including a circuit interrupter including a primary contact and a movable contact movable relative to the primary contact between a closed position allowing current to pass through the circuit interrupter and an open position separating the contacts and preventing current from passing through the circuit interrupter. An actuator is coupled to the circuit interrupter. The actuator includes a movable shaft coupled to the movable contact of the circuit interrupter for substantially simultaneous movement therewith and without insulation being disposed between the movable contact and the movable shaft. An electronic control is electrically connected to the actuator. The electronic control communicates with the actuator upon occurrence of a fault current to trigger the shaft to move the movable contact of the circuit interrupter from the closed position to the open position and to trigger the shaft to reclose the movable contact from the open position to the closed position upon termination of the fault current.
Abstract:
A contact for a vacuum interrupter, includes: 1) a contact plate; and 2) a contact carrier. The contact carrier includes: a first end face which is fitted with the contact plate, and a peripheral face which is formed with a slit portion in such a manner as to form a coil part. The coil part flows a current such that a longitudinal magnetic field is formed in an axial direction of the contact carrier. The first end face fitted with the contact plate is formed with a circumferential slit portion which connects to the slit portion.
Abstract:
The inventive electric contact point of a vacuum valve is made of a sintered alloy containing a heat-resistant metal and a high-conductivity metal. The contact point has at least three slit grooves which extend from the central region to the peripheral region of the contact point, and is soldered to an electrode rod which is connected to the contact point. The contact point includes at least three radially extending vane type contact point members each made of a sintered alloy containing a heat-resistant metal and a high-conductivity metal, and soldered to the electrode rod.
Abstract:
A vacuum circuit breaker including a metal tank containing insulation gas with a branched portion connecting a first bushing containing a vacuum valve, and another branched portion connecting a second bushing containing a first conductor, and a branched conductor in the metal tank connecting the vacuum valve and the first conductor.
Abstract:
An object of the present invention is to provide a vacuum switch which secures safety of a worker at performing maintenance and inspection and is high in reliability, and to provide a vacuum switchgear using the vacuum switch. The above object can be attained by a vacuum switch and a vacuum switchgear in which a pair of detachable electrodes are disposed in a grounded vacuum container, and an insulation coating is applied onto an inner surface of the vacuum container.
Abstract:
A tank filled with an insulating gas accommodates insulator tubes incorporating vacuum-valve breakers for individual phases. One end of each insulator tube is fixed to the inside of the tank. Each vacuum-valve breaker is installed generally on a common longitudinal axis with the relevant insulator tube in such a manner that its movable electrode rod is directed toward the fixed end of the insulator tube. The insulator tube has as its integral part a bus line fixing portion projecting in a direction intersecting the longitudinal axis of the insulator tube from the proximity of its end opposite to the fixed end to support a bus-side conductor in an insulated fashion.
Abstract:
In an actuator of the invention, coils are kept from being displaced along a y-axis direction as projections of coil bobbins are sandwiched between first and second iron cores along the y-axis direction. Also, the coils are kept from being displaced excessively along x- and z-axis directions due to shocks, for instance, as they are fitted in groovelike channels formed in the first and second iron cores. Since two bearings are sandwiched and fixed between third and fourth iron cores along the x-axis direction, the bearings can be easily set on a common axis with high accuracy. It is therefore possible to prevent displacement of the coils during operation of the actuator. Slidable support plates ensure smooth movements of an armature and thereby provide improved reliability even when the distance between the support plates and the first to fourth iron cores is reduced.
Abstract:
The invention relates to a contact arrangement for a vacuum switch tube for low-voltage power switches. The aim of the invention is to reduce the contact force required to control short circuit currents. To this end, a twin-contact contact arrangement is used wherein every contact comprises a plurality of separate individual contacts having a defined spring rate. At least one of the contact bodies (4) is configured as a two-layer spiral contact with a lower layer consisting of a highly elastic material and an upper layer (7) consisting of a highly electroconductive material. A contact coat (9) consisting of a contact material is provided on the upper layer in the outer zone of every contact arm (10).
Abstract:
A circuit interrupter including a housing having an internal cavity. The internal cavity includes a space at a first end thereof, and includes an internal wall extending from the space to a second end of the housing. A vacuum interrupter is disposed in the space. The vacuum interrupter has at least one movable contact for contacting at least one stationary contact. An operating rod extends through the cavity, and is operable to move the moveable contact At least one baffle is fixed to the operating rod, and disposed in the cavity. In a preferred embodiment, at least one step is formed in the wall. The step separates a first internal wall section from a second internal wall section, and the first internal wall section is closer to the space than the second internal wall section.