VIEWABLE IMPRESSIONS SYSTEM
    2.
    发明申请
    VIEWABLE IMPRESSIONS SYSTEM 审中-公开
    可视印象系统

    公开(公告)号:US20160180374A1

    公开(公告)日:2016-06-23

    申请号:US14574033

    申请日:2014-12-17

    Applicant: Yahoo! Inc.

    CPC classification number: G06Q30/0244

    Abstract: Described herein are solutions for improving management of viewable impression based display advertising systems. For example, described herein are solutions for improving management of viewable impression based display advertising systems amongst various online marketing channels, such as search engine and guaranteed display advertising (GDA) marketing channels. The solutions can include use of a legacy GDA system and a score (e.g., a ratio) to bridge viewable impression based control and pricing and regular impression based control and pricing.

    Abstract translation: 这里描述的是用于改进基于可视印象的显示广告系统的管理的解决方案。 例如,这里描述的是用于改进在诸如搜索引擎和保证的显示广告(GDA)营销渠道的各种在线营销渠道之间的可观看印象的显示广告系统的管理的解决方案。 解决方案可以包括使用传统GDA系统和分数(例如,比例)来桥接可见的基于印象的控制和定价以及基于定期印象的控制和定价。

    SYSTEM AND METHOD FOR CONTEXTUAL VIDEO ADVERTISEMENT SERVING IN GUARANTEED DISPLAY ADVERTISING
    4.
    发明申请
    SYSTEM AND METHOD FOR CONTEXTUAL VIDEO ADVERTISEMENT SERVING IN GUARANTEED DISPLAY ADVERTISING 审中-公开
    用于保证展示广告服务的上下文视频广告系统和方法

    公开(公告)号:US20170032424A1

    公开(公告)日:2017-02-02

    申请号:US14815334

    申请日:2015-07-31

    Applicant: Yahoo! Inc.

    CPC classification number: G06Q30/0269 G06Q30/0277

    Abstract: The technologies described herein serve contextually relevant advertisements under a guaranteed advertisement campaign. A publisher retrieves a guaranteed advertisement campaign related to a webpage available for serving an advertisement, and identifies a set of advertisements relating to the guaranteed advertisement campaign. Advertisement selecting circuitry of the publisher determines whether an advertisement that is contextually relevant to content published at the webpage is present in the set of advertisements. If there is no contextually relevant advertisement in the set of advertisements, the advertisement selecting circuitry selects an alternative advertisement from the set of advertisements that minimizes an under-delivery risk related to the guaranteed advertisement campaign. If there is a contextually relevant advertisement in the set of advertisements, the advertisement selecting circuitry selects the contextually relevant advertisement. Then, the publisher provides the selected advertisement to a client device.

    Abstract translation: 本文描述的技术在保证的广告活动下提供与内容相关的广告。 发布者检索与可用于服务广告的网页有关的保证广告活动,并且识别与保证广告活动相关的一组广告。 发布者的广告选择电路决定在该广告集中是否存在与在网页上发布的内容上下文相关的广告。 如果广告集合中没有上下文相关的广告,则广告选择电路从该广告集合中选择一个替代的广告,使与保证的广告活动相关的不足的风险最小化。 如果广告集合中存在上下文相关的广告,则广告选择电路选择上下文相关的广告。 然后,发布者将所选择的广告提供给客户端设备。

    INDUCTIVE MATRIX COMPLETION AND GRAPH PROXIMITY FOR CONTENT ITEM RECOMMENDATION
    5.
    发明申请
    INDUCTIVE MATRIX COMPLETION AND GRAPH PROXIMITY FOR CONTENT ITEM RECOMMENDATION 审中-公开
    感应矩阵完成和内容项目推荐的图像近似

    公开(公告)号:US20160299992A1

    公开(公告)日:2016-10-13

    申请号:US14682603

    申请日:2015-04-09

    Applicant: Yahoo!, Inc.

    CPC classification number: G06F16/951 G06F16/3331

    Abstract: Users may consume and/or share information through various types of content items. For example, user may post a family photo through a social network, create a running blog through a microblogging service, etc. Because users may be overwhelmed by the amount of available content items, it may be advantageous to recommend content items, such as blogs to follow, to users. Accordingly, inductive matrix completion is used to evaluate user interactions with content items (e.g., a user following a blog), content item features (e.g., text and/or images of a blog is evaluated to identify a topic of the blog), and/or user features (e.g., a user liking or reblogging a blog, user demographics, user interests, etc.) to determine whether to recommend a content item to a user. Additionally, graph proximity is used to recommend content items based upon weights of edges connecting user nodes to content item nodes within a directed graph.

    Abstract translation: 用户可以通过各种内容项目消费和/或共享信息。 例如,用户可以通过社交网络发布家庭照片,通过微博服务创建一个正在运行的博客等等。由于用户可能被可用内容项目的数量所压倒,因此推荐内容项目(如博客)可能是有利的 跟随,给用户。 因此,使用感性矩阵完成来评估用户与内容项目的交互(例如,跟随博客的用户),内容项目特征(例如,评估博客的文本和/或图像以识别博客的主题),以及 /或用户特征(例如,用户喜好或重新登录博客,用户人口统计,用户兴趣等)来确定是否向用户推荐内容项。 另外,图形邻近度用于基于将用户节点连接到有向图中的内容项目节点的边缘的权重来推荐内容项目。

    GENERATING PREFERENCE INDICES FOR IMAGE CONTENT
    6.
    发明申请
    GENERATING PREFERENCE INDICES FOR IMAGE CONTENT 有权
    生成图像内容的偏好指标

    公开(公告)号:US20160180162A1

    公开(公告)日:2016-06-23

    申请号:US14579998

    申请日:2014-12-22

    Applicant: Yahoo! Inc.

    Abstract: Briefly, embodiments of methods and/or systems of generating preference indices for contiguous portions of digital images are disclosed. For one embodiment, as an example, parameters of a neural network may be developed to generate object labels for digital images. The developed parameters may be transferred to a neural network utilized to generate signal sample value levels corresponding to preference indices for contiguous portions of digital images.

    Abstract translation: 简而言之,公开了为数字图像的连续部分生成偏好索引的方法和/或系统的实施例。 对于一个实施例,作为示例,可以开发神经网络的参数以生成数字图像的对象标签。 所开发的参数可以被传送到用于产生对应于数字图像的连续部分的偏好索引的信号样本值级别的神经网络。

Patent Agency Ranking