Abstract:
Briefly, embodiments of methods and/or systems of training multiclass convolutional neural networks (CNNs) are disclosed. For one embodiment, as an example, an auxiliary CNN may be utilized to form an ensemble with the collection as a linear combination. The linear combination may be based, at least in part, on boost prediction error encountered during the training process.
Abstract:
Briefly, embodiments of methods and/or systems of detecting and image of a human face in a digital image are disclosed. For one embodiment, as an example, parameters of a neural network may be developed to generate object labels for digital images. The developed parameters may be refined by a neural network to generate signal sample value levels corresponding to probability that a human face may be depicted at a localized region of a digital image.
Abstract:
The technologies described herein serve contextually relevant advertisements under a guaranteed advertisement campaign. A publisher retrieves a guaranteed advertisement campaign related to a webpage available for serving an advertisement, and identifies a set of advertisements relating to the guaranteed advertisement campaign. Advertisement selecting circuitry of the publisher determines whether an advertisement that is contextually relevant to content published at the webpage is present in the set of advertisements. If there is no contextually relevant advertisement in the set of advertisements, the advertisement selecting circuitry selects an alternative advertisement from the set of advertisements that minimizes an under-delivery risk related to the guaranteed advertisement campaign. If there is a contextually relevant advertisement in the set of advertisements, the advertisement selecting circuitry selects the contextually relevant advertisement. Then, the publisher provides the selected advertisement to a client device.