摘要:
The present invention relates to a conductive tape. The conductive tape includes a base, an adhesive layer, and a carbon nanotube layer. The adhesive layer is configured for being sandwiched between the base and the carbon nanotube layer. And a method for making the conductive tape includes the steps of: fabricating at least one carbon nanotube film and an adhesive agent; coating the adhesive agent on a base and drying the adhesive agent on the base so as to form an adhesive layer; and forming a carbon nanotube layer on the adhesive layer and compressing the carbon nanotube layer so as to sandwich the adhesive layer between the carbon nanotube layer and the base.
摘要:
An anode of a lithium battery includes a supporting member and a carbon nanotube film disposed on a surface of the support member. The carbon nanotube film includes at least two overlapped and intercrossed layers of carbon nanotubes. Each layer includes a plurality of successive carbon nanotube bundles aligned in the same direction. A method for fabricating the anode of the lithium battery includes the steps of: (a) providing an array of carbon nanotubes; (b) pulling out, by using a tool, at least two carbon nanotube films from the array of carbon nanotubes; and (c) providing a supporting member and disposing the carbon nanotube films to the supporting member along different directions and overlapping with each other to achieving the anode of lithium battery.
摘要:
An anode of a lithium battery includes a supporting member and a carbon nanotube film disposed on a surface of the support member. The carbon nanotube film includes at least two overlapped and intercrossed layers of carbon nanotubes. Each layer includes a plurality of successive carbon nanotube bundles aligned in the same direction. A method for fabricating the anode of the lithium battery includes the steps of: (a) providing an array of carbon nanotubes; (b) pulling out, by using a tool, at least two carbon nanotube films from the array of carbon nanotubes; and (c) providing a supporting member and disposing the carbon nanotube films to the supporting member along different directions and overlapping with each other to achieving the anode of lithium battery.
摘要:
A cathode of a lithium battery includes a composite film. The composite film includes a carbon nanotube film structure and a plurality of active material particles dispersed therein. A method for fabricating the cathode of the lithium battery includes the steps of (a) providing an array of carbon nanotubes; (b) pulling out, by using a tool, at least two carbon nanotube films from the array of carbon nanotubes to form a carbon nanotube film structure; and (c) providing a plurality of active material particles, dispersing the active material particles in the carbon nanotube structure to form a composite film, and thereby, achieving the cathode of the lithium battery.
摘要:
A field emission cathode includes a conductive substrate and a carbon nanotube film disposed on a surface of the conductive substrate. The carbon nanotube film includes a plurality of successive and oriented carbon nanotube bundles parallel to the conductive substrate, the carbon nanotubes partially extrude from the carbon nanotube film. A method for fabricating the field emission cathode includes the steps of: (a) providing a conductive substrate; (b) providing at least one carbon nanotube film, the carbon nanotube film including a plurality of successive and oriented carbon nanotube bundles joined end to end, the carbon nanotube bundles parallel to the conductive substrate, and (c) disposing the at least one carbon nanotube film to the conductive substrate to achieve the field emission cathode.
摘要:
An optical polarizer includes a supporting member and a polarizing film supported by the supporting member. The polarizing film includes at least one layer of a carbon nanotube film, and the carbon nanotubes in a given carbon nanotube film are aligned in the same direction therein. A method for fabricating the optical polarizer includes the steps of: (a) providing a supporting member; (b) providing at least one layer of a carbon nanotube film, the carbon nanotubes in a given carbon nanotube film aligned along the same direction; and (c) adhering a given carbon nanotube film to the supporting member to form the optical polarizer.
摘要:
A field emission element (100) includes an elongated body (110), a carbon nanotube yarn (112) and an electrically conductive adhesive agent (114). The carbon nanotube yarn wraps round the elongated body. The electrically conductive adhesive agent is applied between the elongated body and the carbon nanotube yarn, and the electrically conductive adhesive agent is configured for fixing the carbon nanotube yarn to the elongated body. A method for manufacturing a field emission element using carbon nanotubes is also provided.
摘要:
A carbon nanotube film structure includes at least two overlapped carbon nanotube films, with adjoining films being aligned in different directions. Each carbon nanotube film includes a plurality of successive carbon nanotube bundles aligned in the same direction. The carbon nanotube structure further includes a plurality of micropores formed by/between the adjoining carbon nanotube bundles. A method for fabricating the carbon nanotube film structure includes the steps of: (a) providing an array of carbon nanotubes; (b) pulling out, using a tool, one carbon nanotube film from the array of carbon nanotubes; (c) providing a frame and adhering the carbon nanotube film to the frame; (d) repeating steps (b) and (c), depositing each successive film on a preceding film, thereby achieving at least a two-layer carbon nanotube film; and (e) peeling the carbon nanotube film off the frame to achieve the carbon nanotube structure.
摘要:
A method for fabricating a super-aligned carbon nanotube array includes the following steps: (1) providing a flat and smooth substrate (11); (2) depositing a catalyst layer (12) on the substrate at a rate of less than about 5 nm/s; (3) annealing the catalyst layer at atmosphere; (4) positioning the substrate with the catalyst layer into a furnace; (5) heating the furnace up to a predetermined temperature; and (6) supplying a reaction gas into the furnace, thereby growing a number of carbon nanotubes (22) on the substrate, via the catalyst layer, such that the carbon nanotube array is formed on the substrate.
摘要:
A field emission element (100) includes an elongated solid body (110), a carbon nanotube yarn (112) and an electrically conductive adhesive agent (114). The carbon nanotube yarn wraps round the elongated solid body. The electrically conductive adhesive agent is applied between the elongated solid body and the carbon nanotube yarn, and the electrically conductive adhesive agent is configured for fixing the carbon nanotube yarn to the elongated solid body. The substantially all of carbon nanotube yarn is entirely adhered on a peripheral surface of the elongated solid body.