Abstract:
A turbine engine system includes a first lubricant circuit, a second lubricant circuit, a plurality of engine stages and a shaft. The first lubricant circuit includes a first turbine engine component that is fluidly coupled with a first lubricant heat exchanger. The second lubricant circuit includes a second turbine engine component that is fluidly coupled with a second lubricant heat exchanger, wherein the second lubricant circuit is fluidly separate from the first lubricant circuit. The first turbine engine component includes a gear train, which connects a first of the engine stages to a second of the engine stages. The second turbine engine component includes a bearing. The shaft is supported by the bearing and connected to one of the engine stages.
Abstract:
A method of sizing a heat exchanger for a geared architecture gas turbine engine includes sizing a minimum frontal area of at least one heat exchanger located in communication with a fan bypass airflow such that a ratio of waste heat area to horsepower generation characteristic area is between 1.6 to 8.75.
Abstract:
An air-oil cooler (AOC) for a gas turbine engine is disclosed. The AOC may comprise an oil inlet, an oil outlet, and heat exchange elements between the oil inlet and the oil outlet. The AOC may be longitudinally positioned between a fan and a V-groove of the engine and radially spaced between a low pressure compressor and a low pressure compressor panel. A gas turbine engine comprising an AOC is disclosed. The AOC of the engine may comprise an oil inlet, an oil outlet, and heat exchange elements between the oil inlet and the oil outlet. The AOC of the engine may be longitudinally positioned between a fan and a V-groove of the engine and radially spaced between a low pressure compressor and a low pressure compressor panel. A method of operating an AOC for use on a gas turbine engine is also disclosed.
Abstract:
A thermal energy exchange system for cooling air of a gas turbine engine includes a heat exchanger located at a diffuser of the gas turbine engine. The diffuser is positioned axially between a compressor and a combustor of the gas turbine engine. A fuel source is operably connected to the heat exchanger to direct a flow of fuel through the heat exchanger via a fuel pipe and toward a fuel nozzle of the combustor. An airflow inlet directs a cooling airflow through the heat exchanger to reduce an airflow temperature via thermal energy exchange between the cooling airflow and the flow of fuel. An airflow outlet directs the cooling airflow from the heat exchanger toward one or more of components of the turbine to cool the one or more components.
Abstract:
An example turbomachine assembly includes, among other things, a nose cone of a turbomachine, and a pump at least partially within an interior of the nose cone. The pump is selectively rotated by a motor to communicate air to the interior.
Abstract:
A gas turbine engine includes a fan case radially outwardly of a core compartment. A compressor section is located within an engine core compartment and includes a front mount flange and an aft mount flange. An oil tank is mounted to at least one of the fan case or the front and aft mount flanges. The oil tank has a cooling structure integrated into an outer surface such that the oil tank is subjected to cooling air flow from a plurality of air sources.
Abstract:
A geared turbofan engine having a bypass ratio of at least six (6) includes a nacelle that encloses a fan assembly and at least part of an engine case that houses an engine core. The fan assembly is disposed fore of the engine case. The nacelle and engine case defining an annular fan duct for air flow that passes through the fan but that bypasses the engine core. The nacelle includes a fore end and an aft end that defines a fan nozzle with the engine case. The engine case includes an inlet and an outlet. The inlet is connected to a duct that extends within the engine case to the outlet. The duct accommodates an air-oil heat exchanger between the inlet and outlet of the duct, which may be used for the gearbox dedicated to reducing the speed of the fan as compared to the low pressure turbine.
Abstract:
A turbine engine system includes a first lubricant circuit, a second lubricant circuit, a plurality of engine stages and a shaft. The first lubricant circuit includes a first turbine engine component that is fluidly coupled with a first lubricant heat exchanger. The first turbine engine component includes a gear train, which connects a first of the engine stages to a second of the engine stages. The second lubricant circuit includes a second turbine engine component that is fluidly coupled with a second lubricant heat exchanger. The second lubricant circuit is fluidly coupled with the first lubricant circuit, and the second turbine engine component includes a bearing. The shaft is supported by the bearing, and connected to one of the engine stages.
Abstract:
An example turbomachine assembly includes, among other things, a nose cone of a turbomachine, and a pump at least partially within an interior of the nose cone. The pump is selectively rotated by a motor to communicate air to the interior.
Abstract:
An example turbomachine assembly includes, among other things, a nose cone of a turbomachine, and a pump at least partially within an interior of the nose cone. The pump is selectively rotated by a motor to communicate air to the interior.