Abstract:
Aspects of quadrature phase shift keying for quadrature amplitude modulation are described. In some examples, quadrature phase shift keying signals are generated using quadrature phase shift keying modulators. The quadrature phase shift keying signals are combined in a combiner circuit to generate a quadrature amplitude modulation signal for wireless transmission.
Abstract:
Techniques, systems and architectures for generating desired phase shifts in a phased array to control the directions of radiation in a wide range of angles are disclosed. Particularly, phased array architectures based on novel PLL-coupled phase shifting techniques for implementation in millimeter-wave (mm-wave) and sub-terahertz (sub-THz) operations range are described. In one aspect, a phased array including an array of unit cells is disclosed. In some embodiments, each unit cell in the array of unit cells includes a dual-nested PLL that is configured to effectuate phase locking and frequency locking to a reference signal from an adjacent unit cell. Moreover, each PLL includes control circuitry that can generate a wide range of phase shifts between adjacent unit cells to facilitate phased-array operations. Note that using the dual-nested PLL to generate a desired phase shift between adjacent radiating elements eliminates the use of conventional lossy phase shifters in the phased array.
Abstract:
A fully-implantable brain-computer interface cyber-physical system capable of acquiring and analyzing electrocorticogram (“ECoG”) signals, recorded directly from the subdural space of the brain, to enable direct brain control of a prosthetic (e.g., a robotic gait exoskeleton or a functional electrical stimulation (“FES”) system) is disclosed. The present system comprises a plurality of electrodes, for acquiring the ECoG signals, and a digital signal processor (“DSP”) for deriving a plurality of real-time commands from the ECoG signals. These real-time commands may then be wirelessly transmitted to the prosthetic for execution. Further, to avoid wireless data transmission of the ECoG signals from the plurality of electrodes to the DSP, which would expose the brain, skull, and scalp tissue to potentially harmful radio frequencies, a subcutaneous tunneling cable operatively couples the plurality of electrodes and the DSP.
Abstract:
Design of ultra broadband transimpedance amplifiers (TIA) for optical fiber communications is disclosed. In one embodiment, a TIA comprises a gm-boosted dual-feedback common-base stage, a level shifter and an RC-degenerated common-emitter stage, and a first emitter-follower stage, wherein the first emitter follower stage is inductively degenerated. An output of the TIA is buffered using a second emitter-follower stage.
Abstract:
Design of ultra broadband transimpedance amplifiers (TIA) for optical fiber communications is disclosed. In one embodiment, a TIA comprises a gm-boosted dual-feedback common-base stage, a level shifter and an RC-degenerated common-emitter stage, and a first emitter-follower stage, wherein the first emitter follower stage is inductively degenerated. An output of the TIA is buffered using a second emitter-follower stage.
Abstract:
An electromagnetic wave radiator may include: a first metal layer; a plurality of metal side walls vertically protruding along an edge of the first metal layer; and a second metal layer suspended over the first metal layer. The second metal layer includes a plurality of ports radially extending from edges of the second metal layer and a plurality of slots penetrating the second metal layer in a radial direction.
Abstract:
A code-division multiplexing (CDM) system utilized in multi-channel (MC) front-end integrated circuits to significantly reduce the power consumption of such systems. The CDM system extends data compression advantages to uncorrelated and weakly correlated MC signals through the introduction of a new Multi-Channel Signal Binning and Multiplexing (MCSBM) method and architecture. The method achieves significant reductions in power consumption in comparison to a conventional time-division multiplexing quantizer, while adding only a modest amount of overhead and complexity. Systems and methods permit architects to fabricate MC integrated circuits with ultra low power consumption and small chip area. Another embodiment relates to the system's compressor organizing samples of the input signal in such a way that the downstream analog-to-digital converter quantizes the higher variance samples with a higher resolution compared to the resolution it uses to quantize other samples with lower variance.
Abstract:
An electromagnetic wave radiator may include: a first metal layer; a plurality of metal side walls vertically protruding along an edge of the first metal layer; and a second metal layer suspended over the first metal layer. The second metal layer includes a plurality of ports radially extending from edges of the second metal layer and a plurality of slots penetrating the second metal layer in a radial direction.
Abstract:
Techniques, systems and architectures for generating desired phase shifts in a phased array to control the directions of radiation in a wide range of angles are disclosed. Particularly, phased array architectures based on novel PLL-coupled phase shifting techniques for implementation in millimeter-wave (mm-wave) and sub-terahertz (sub-THz) operations range are described. In one aspect, a phased array including an array of unit cells is disclosed. In some embodiments, each unit cell in the array of unit cells includes a dual-nested PLL that is configured to effectuate phase locking and frequency locking to a reference signal from an adjacent unit cell. Moreover, each PLL includes control circuitry that can generate a wide range of phase shifts between adjacent unit cells to facilitate phased-array operations. Note that using the dual-nested PLL to generate a desired phase shift between adjacent radiating elements eliminates the use of conventional lossy phase shifters in the phased array.
Abstract:
Methods, systems, and apparatuses provide a transmitter architecture that directly generates 4N-QAM constellation using a raw bit stream as input and that does not require a digital-to-analog converter (DAC) in the signal path.