Abstract:
An apparatus includes a first oscillator to generate an output signal that has a first frequency. The apparatus further includes a second oscillator to generate an output signal that has a second frequency. The second frequency varies as a function of temperature. The apparatus further includes a controller that counts a number of cycles of the output signal of the second oscillator in order to determine whether to calibrate the first oscillator.
Abstract:
A circuit includes a discriminator to store a threshold. The circuit further includes a comparator including a first input to receive a count, a second input to receive the threshold, and an output to provide an output signal representing a result of the comparison between the count and the threshold. The circuit also includes a controller to automatically adjust the threshold when the count exceeds a first threshold or falls below a second threshold.
Abstract:
An apparatus includes a first oscillator to generate an output signal that has a first frequency. The apparatus further includes a second oscillator to generate an output signal that has a second frequency. The second frequency varies as a function of temperature. The apparatus further includes a controller that counts a number of cycles of the output signal of the second oscillator in order to determine whether to calibrate the first oscillator.
Abstract:
A circuit includes a discriminator to store a threshold. The circuit further includes a comparator including a first input to receive a count, a second input to receive the threshold, and an output to provide an output signal representing a result of the comparison between the count and the threshold. The circuit also includes a controller to automatically adjust the threshold when the count exceeds a first threshold or falls below a second threshold.
Abstract:
An apparatus includes a sensor circuit to receive a varying signal at an input of the apparatus. The sensor circuit provides a sensor signal corresponding to a measurement of the varying signal. The apparatus further includes a timer circuit to generate a signal at various intervals of a plurality of intervals and a controller coupled to the sensor circuit. The controller has a first power mode and a second power mode, where the first power mode has a lower power consumption than the second power mode. The controller enters the second power mode in response to the signal from the timer circuit. The controller enables the sensor circuit, captures a plurality of measurements of the varying signal, and returns to the first power mode.
Abstract:
A method includes receiving a count corresponding to a number of peaks of a resonant signal that exceed a reference signal and comparing the count to a floating count window defined by a first count threshold and a second count threshold, the first count threshold is larger than the second count threshold. The method further includes selectively shifting the floating count window in a direction of the count when the count falls outside of the floating count window.
Abstract:
A method includes receiving a count corresponding to a number of peaks of a resonant signal that exceed a reference signal and comparing the count to a floating count window defined by a first count threshold and a second count threshold, the first count threshold is larger than the second count threshold. The method further includes selectively shifting the floating count window in a direction of the count when the count falls outside of the floating count window.
Abstract:
An apparatus includes a sensor circuit to receive a varying signal at an input of the apparatus. The sensor circuit provides a sensor signal corresponding to a measurement of the varying signal. The apparatus further includes a timer circuit to generate a signal at various intervals of a plurality of intervals and a controller coupled to the sensor circuit. The controller has a first power mode and a second power mode, where the first power mode has a lower power consumption than the second power mode. The controller enters the second power mode in response to the signal from the timer circuit. The controller enables the sensor circuit, captures a plurality of measurements of the varying signal, and returns to the first power mode.