Abstract:
An apparatus for iteratively estimating a channel in a receiver of a wireless communication system is provided. The apparatus includes a channel estimator configured to estimate a first channel value by using a pilot symbol included in a received signal, a demodulator configured to demodulate the received signal by using the first channel value, a decoding unit configured to decode the received signal demodulated by the demodulator, a feedback determining unit configured to determine whether to iteratively estimate the channel, and a feedback device configured to feed back an input value of the decoding unit when the feedback determining unit determines to iteratively estimate the channel, wherein when the feedback determining unit determines to iteratively estimate the channel, the channel estimator estimates a second channel value by using at least one of the pilot symbol included in the received signal and a data symbol received from the feedback device.
Abstract:
An electronic device includes: an antenna; a communication circuit connected with the antenna; and one or more processors, wherein the one or more processors are configured to: identify a second amount of power corresponding to a second output signal outputted through the antenna for a second time using the communication circuit, the operation of identifying the second amount of power comprising an operation of identifying a second electromagnetic wave absorption rate corresponding to the second amount of power; determine a maximum output power for a third output signal to be outputted through the antenna according to a difference between a target electromagnetic wave absorption rate and the second electromagnetic absorption rate; and output the third output signal through the antenna based at least one the maximum output power.
Abstract:
An electronic device and a method a provided. The electronic device includes a first surface, a second surface opposite to the first surface, and a side surface that surrounds at least part of a space between the first and second surfaces; a Radio Frequency (RF) communication circuit; an antenna radiator that forms at least part of at least one of the first surface, the second surface, and the side surface and is connected to the RF communication circuit; a sensor that detects whether an external object contacts the antenna radiator; a switching circuit connected to the antenna radiator and the sensor; and a processor configured to receive a first value from the sensor when the antenna radiator and the sensor are connected to each other and to receive a second value from the sensor when the antenna radiator and the sensor are separated from each other.
Abstract:
An electronic device includes: an antenna; a communication circuit connected with the antenna; and one or more processors, wherein the one or more processors are configured to: identify a second amount of power corresponding to a second output signal outputted through the antenna for a second time using the communication circuit, the operation of identifying the second amount of power comprising an operation of identifying a second electromagnetic wave absorption rate corresponding to the second amount of power; determine a maximum output power for a third output signal to be outputted through the antenna according to a difference between a target electromagnetic wave absorption rate and the second electromagnetic absorption rate; and output the third output signal through the antenna based at least one the maximum output power.
Abstract:
An electronic device and a method a provided. The electronic device includes a first surface, a second surface opposite to the first surface, and a side surface that surrounds at least part of a space between the first and second surfaces; a Radio Frequency (RF) communication circuit; an antenna radiator that forms at least part of at least one of the first surface, the second surface, and the side surface and is connected to the RF communication circuit; a sensor that detects whether an external object contacts the antenna radiator; a switching circuit connected to the antenna radiator and the sensor; and a processor configured to receive a first value from the sensor when the antenna radiator and the sensor are connected to each other and to receive a second value from the sensor when the antenna radiator and the sensor are separated from each other.