Abstract:
A quantum dot including a core that includes a first semiconductor nanocrystal including zinc and selenium, and optionally sulfur and/or tellurium, and a shell that includes a second semiconductor nanocrystal including zinc, and at least one of sulfur or selenium is disclosed. The quantum dot has an average particle diameter of greater than or equal to about 13 nm, an emission peak wavelength in a range of about 440 nm to about 470 nm, and a full width at half maximum (FWHM) of an emission wavelength of less than about 25 nm. A method for preparing the quantum dot, a quantum dot-polymer composite including the quantum dot, and an electronic device including the quantum dot is also disclosed.
Abstract:
An electroluminescent display device and a light emitting device including a blue light emitting layer include a first electrode, a second electrode, and a light emitting layer between the first electrode and the second electrode. The light emitting layer includes a blue light emitting layer including a plurality of nanostructures, the plurality of nanostructures does not include cadmium. On an application of a bias voltage, the blue light emitting layer is configured to emit light of an emission peak wavelength (λmax) in a range of greater than or equal to about 445 nm and less than or equal to about 480 nm. During a bias voltage change from a first voltage to a second voltage, the second voltage being greater than the first voltage by at least about 5 volts, the emission peak wavelength (λmax) of the blue light emitting layer may exhibit a first emission peak wavelength (a 1st λmax wavelength) that is less than an emission peak wavelength at the first voltage (λmax@first voltage) and an emission peak wavelength at the second voltage (λmax@second voltage), and during the bias voltage change, a change width in emission peak wavelength (λmax) is less than or equal to about 4 nm.
Abstract:
A light source includes a light emitting element which emits light, and a light conversion layer which converts the light emitted from the light emitting element into white light and emits the white light, where the light conversion layer includes a resin and a quantum dot material mixed with the resin, and a red apex of a color region of the white light is positioned in a region of 0.65
Abstract:
A semiconductor nanocrystal-ligand composite, including a semiconductor nanocrystal and a ligand layer including an organic ligand coordinated on a surface of the semiconductor nanocrystal, wherein the organic ligand includes a compound represented by Chemical Formula 1, compound represented by Chemical Formula 2, or a combination thereof, and wherein Chemical Formula 1 and Chemical Formula 2 are the same as described in detailed herein.
Abstract:
A quantum dot includes a core including a first semiconductor nanocrystal material including zinc, tellurium, and selenium; and a semiconductor nanocrystal shell disposed on (e.g., directly on) the core and including zinc, selenium, and sulfur, wherein the quantum dot does not include cadmium, wherein a size of the quantum dot is greater than or equal to about 10 nanometers (nm) and the quantum dot includes at least four protrusions. A production method thereof and an electronic device including the same are also disclosed.
Abstract:
A semiconductor nanocrystal particle including zinc (Zn), tellurium (Te) and selenium (Se), a method of producing the same, and an electronic device including the same are disclosed. In the semiconductor nanocrystal particle, an amount of the tellurium is less than an amount of the selenium, the particle includes a core including a first semiconductor material including zinc, tellurium, and selenium and a shell disposed on at least a portion of the core and including a second semiconductor material having a different composition from the first semiconductor material, and the semiconductor nanocrystal particle emits blue light including a maximum peak emission at a wavelength of less than or equal to about 470 nanometers.
Abstract:
A method of grinding a semiconductor nanocrystal-polymer composite, the method including obtaining a semiconductor nanocrystal-polymer composite including a semiconductor nanocrystal and a first polymer, contacting the semiconductor nanocrystal-polymer composite with an inert organic solvent; and grinding the semiconductor nanocrystal-polymer composite in the presence of the inert organic solvent to grind the semiconductor nanocrystal-polymer composite.
Abstract:
A method of grinding a semiconductor nanocrystal-polymer composite, the method including obtaining a semiconductor nanocrystal-polymer composite including a semiconductor nanocrystal and a first polymer, contacting the semiconductor nanocrystal-polymer composite with an inert organic solvent; and grinding the semiconductor nanocrystal-polymer composite in the presence of the inert organic solvent to grind the semiconductor nanocrystal-polymer composite.
Abstract:
A method of manufacturing a semiconductor light emitting device, includes forming a light emitting structure on a growth substrate. The light emitting structure includes a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer. A support substrate having one or more protrusions formed on one surface thereof is prepared. The one or more protrusions formed on the one surface of the support substrate are attached to one surface of the light emitting structure. The growth substrate is separated from the light emitting structure.
Abstract:
A quantum dot including: a core including a first semiconductor nanocrystal material including zinc, tellurium, and selenium; and a semiconductor nanocrystal shell disposed on the core, the semiconductor nanocrystal shell including zinc, selenium, and sulfur, wherein the quantum dot does not include cadmium, and in the quantum dot, a mole ratio of the sulfur with respect to the selenium is less than or equal to about 2.4:1. A production method of the quantum dot and an electronic device including the same are also disclosed.