Abstract:
A semiconductor device including a capacitor is provided. The semiconductor device includes lower electrodes, each of which includes a first electrode and a second electrode stacked in a first direction. The second electrode has a pillar shape that has a bar-type cross section having a longitudinal axis when viewed from a cross-sectional view taken along a plane defined by second and third directions perpendicular to the first direction.
Abstract:
A semiconductor device includes storage electrodes on a substrate and one or more supporters configured to couple one or more portions of the storage electrodes. The semiconductor device may include multiple non-intersecting supporters extending in parallel to a surface of the substrate. At least one supporter may have an upper surface that is substantially coplanar with upper surfaces of the storage electrodes. The storage electrodes may include a capacitor dielectric layer that conformally covers one or more surfaces of the storage electrodes and one or more supporters. A storage electrode may include upper and lower storage electrodes coupled together. The upper and lower storage electrodes may have different horizontal widths.
Abstract:
A method of fabricating a semiconductor device includes forming a mold structure including a lower support layer and an upper support layer sequentially stacked on a substrate, doping portions of the upper and lower support layers with impurities to divide each of the upper and lower support layers into first portions doped with the impurities and a second portion surrounding the first portions in a plan view, and removing the first portions of the upper and lower support layers to form an upper support pattern having first openings and a lower support pattern having second openings.
Abstract:
A semiconductor device includes first and second bit line structures on a substrate and spaced apart from each other, a via plug partially filling between the first and second bit line structures, a via pad in contact with an upper surface of the via plug and an upper sidewall of the first bit line structure, the via pad being spaced apart from an upper portion of the second bit line structure, a first cavity filled with air being between the via plug and the first bit line structure and a second cavity filled with air between the via plug and the second bit line structure, A gap capping spacer having a first portion on the upper sidewall of the first bit line structure and a second portion covers the first air spacer. A horizontal width of the first portion is smaller than that of the second portion.
Abstract:
A semiconductor device and a method of fabricating a semiconductor device, the device including an active region on a substrate, the active region being defined by a field region; gate trenches in the active region of the substrate; gate structures respectively formed in the gate trenches; and at least one carrier barrier layer in the substrate and under the gate trenches.
Abstract:
Semiconductor devices include a first gate pattern provided on the first active region, a second gate pattern over the first active region, a third gate pattern over the second active region, and a fourth gate pattern over the second active region. The second gate pattern is parallel to the first gate pattern in a first direction. The third gate pattern has an asymmetric shape to the first gate pattern with respect to the first direction, and the fourth gate pattern is parallel to the third gate pattern in the first direction, and has an asymmetric shape to the second gate pattern with respect to the first direction. MOS transistors having good properties may be provided in a narrow horizontal area. The MOS transistors may be used in highly stacked semiconductor devices.