Abstract:
A semiconductor light emitting device is provided and includes a protective element including a first lower conductivity-type semiconductor layer and a second lower conductivity-type semiconductor layer. First and second lower electrodes are connected to the first lower conductivity-type semiconductor layer and the second lower conductivity-type semiconductor layer, respectively. A light emitting structure includes a first upper conductivity-type semiconductor layer, an active layer, and a second upper conductivity-type semiconductor layer sequentially formed on the protective element. First and second upper electrodes are connected to the first upper conductivity-type semiconductor layer and the second upper conductivity-type semiconductor layer, respectively.
Abstract:
A semiconductor package that include first and second semiconductor chips bonded together, wherein the first semiconductor chip includes a first semiconductor substrate, a first semiconductor element layer and a first wiring structure sequentially stacked on a first surface of the first semiconductor substrate, first connecting pads and first test pads on the first wiring structure, and first front-side bonding pads, which are connected to the first connecting pads, wherein the second semiconductor chip includes a second semiconductor substrate, a second semiconductor element layer and a second wiring structure sequentially stacked on a third surface of the second semiconductor substrate, and first back-side bonding pads bonded to the first front-side bonding pads on the fourth surface of the second semiconductor substrate, and wherein the first test pads are not electrically connected to the second semiconductor chip.
Abstract:
A semiconductor device including a substrate, a wiring pattern in the substrate, a passivation layer on the substrate, the passivation layer and the substrate including a first recess penetrating a part of each of the passivation layer and the substrate and extending toward the wiring pattern, a post connected to the wiring pattern and including a first portion within the first recess and a second portion on the first portion and protruding from a top surface of the passivation layer, a signal bump including a seed layer on the post, a lower bump on the seed layer, and an upper bump on the lower bump, and a heat transfer bump apart from the signal bump, electrically insulated from the wiring pattern, and including another seed layer on the passivation layer, another lower bump on the another seed layer, and another upper bump on the another lower bump may be provided.
Abstract:
A nanostructure semiconductor light emitting device includes a base layer, an insulating layer and a plurality of light emitting nanostructures. The base layer is formed of a first conductivity type semiconductor. The insulating layer is disposed on the base layer and has a plurality of openings through which regions of the base layer are exposed. Each of the light emitting nanostructures is disposed on the exposed regions of the base layer and includes nanocore formed of a first conductivity type semiconductor, and an active layer and a second conductivity-type semiconductor layer sequentially disposed on side surfaces of the nanocore. Upper surfaces of the light emitting nanostructures are non-planar and contain portions free of the second conductivity-type semiconductor layer in order to prevent light emissions during device driving.