Abstract:
In a method of forming a pattern of a semiconductor device, a hard mask layer is formed on a substrate. A photoresist film is coated on the hard mask layer. The photoresist film is exposed and developed to form a first photoresist pattern. A smoothing process is performed on the first photoresist pattern to form a second photoresist pattern having a roughness property lower from that of the first photoresist pattern. In the smoothing process, a surface of the first photoresist pattern is treated with an organic solvent. An ALD layer is formed on a surface of the second photoresist pattern. The ALD layer is anisotropically etched to form an ALD layer pattern on a sidewall of the second photoresist pattern. The hard mask layer is etched using the second photoresist pattern and the ALD layer pattern as an etching mask to form a hard mask pattern.
Abstract:
A semiconductor device and methods of manufacturing the same are provided. The semiconductor device includes a substrate, buried semiconductor layers, a word line, a bit line, buried contacts, and insulation spacers, and a charge storage. The substrate has active regions and field regions. The buried semiconductor layers are buried in the substrate at the active regions. The word line is buried in the substrate and crosses one of the active regions. The bit line is disposed in one of the active regions. The buried contacts are disposed on the active regions and the field regions. The insulation spacers are disposed on the substrate and on a sidewall of the buried contacts, respectively. The charge storage is disposed on one or more of the buried contacts. The buried semiconductor layers contact, respectively, one of the buried contacts and one of the insulation spacers.
Abstract:
A lithography apparatus and a method of using the same, the apparatus including a stage for accommodating a substrate that has a photoresist film thereon; a main unit on the stage, the main unit being configured to irradiate a projection beam to the photoresist film; and an electric field unit adjacent to the stage, the electric field unit being configured to apply an electric field to the photoresist film, wherein the electric field unit is configured to be turned on at a same time as or before irradiation of the projection beam, and is configured to be turned off at a same time as or after termination of the projection beam.
Abstract:
In a method of forming a pattern, a lower coating layer and a photoresist layer are sequentially formed on an object layer. An exposure process may be performed such that the photoresist layer is divided into an exposed portion and a non-exposed portion. A portion of the lower coating layer overlapping or contacting the exposed portion is at least partially transformed into a polarity conversion portion that has a polarity substantially identical to that of the exposed portion. The non-exposed portion of the photoresist layer is selectively removed.
Abstract:
A semiconductor device and methods of manufacturing the same are provided. The semiconductor device includes a substrate, buried semiconductor layers, a word line, a bit line, buried contacts, and insulation spacers, and a charge storage. The substrate has active regions and field regions. The buried semiconductor layers are buried in the substrate at the active regions. The word line is buried in the substrate and crosses one of the active regions. The bit line is disposed in one of the active regions. The buried contacts are disposed on the active regions and the field regions. The insulation spacers are disposed on the substrate and on a sidewall of the buried contacts, respectively. The charge storage is disposed on one or more of the buried contacts. The buried semiconductor layers contact, respectively, one of the buried contacts and one of the insulation spacers.
Abstract:
A semiconductor device and methods of manufacturing the same are provided. The semiconductor device includes a substrate, word lines, a doped junction, bit line structures, and buried contacts. The substrate has active regions. The word lines extend across the active regions. The doped junction has impurities and is arranged at the active regions, and includes first junctions and second junctions, each first junction arranged at a central portion of one of the active regions and each second junction arranged at an end portion of another one of the active regions, a buried semiconductor layer being included in each second junction. The bit line structures contact with a respective one of the first junctions. The buried contacts are arranged in a matrix shape, each contacting with a respective one of the second junctions and the included buried semiconductor layer and simultaneously contacting with a charge storage for storing data.
Abstract:
Example embodiments relate to a method of forming a photoresist pattern and a method of fabricating a semiconductor device using the same. The method of fabricating a semiconductor device comprises forming a mask layer on a substrate, forming a photoresist pattern on the mask layer, the photoresist pattern having pattern portions at a first height and recess portions, applying a first liquid onto the photoresist pattern, filling the recess portions with a pattern filler at a second height, the pattern filler having an higher etch rate than the etch rate of the pattern portions to the same etchant, removing the first liquid, etching the pattern filler after removing the first liquid, etching the mask layer via the photoresist pattern to form a mask pattern, and etching the substrate via the mask pattern to form a fine pattern.