Abstract:
A method of manufacturing a display apparatus includes forming a flexible substrate on a first surface of a carrier substrate, forming a display device on the flexible substrate, and ablating the carrier substrate by radiating a plurality of laser beams on a second surface of the carrier substrate, the second surface being opposite the first surface, such that the plurality of laser beams is incident on the second surface at different angles, passes through the carrier substrate, and is overlappingly focused on a first region of a boundary surface between the carrier substrate and the flexible substrate.
Abstract:
A method of fabricating a device includes providing a process substrate on a carrier substrate, where the process substrate has a rectangular shape with a pair of long sides and a pair of short sides, providing a device on the process substrate, and continuously peeling the process substrate from the carrier substrate along a curve passing through a starting point which is one of vertices the process substrate, where the curve substantially perpendicularly passes through one of the short sides spaced apart from the starting point.
Abstract:
Embodiments of the present invention relate to a thin film transistor array panel and a display device including the same. An exemplary embodiment of the present invention provides a thin film transistor array panel and a display device including the same, including: an insulation substrate including an upper surface and a lower surface; a light blocking member disposed on or facing the upper surface of the insulation substrate and defining a plurality of openings; and a thin film transistor disposed on the upper surface of the insulation substrate. The insulation substrate may include a plurality of recesses formed in the opening in the lower surface of the insulation substrate, each recess positioned to correspond to one of the openings.
Abstract:
Embodiments provide a display device including: a thin film transistor disposed on an insulation substrate including a plurality of pixels; a common electrode and a pixel electrode disposed on the thin film transistor to overlap each other while interposing an insulating layer therebetween; a liquid crystal layer filling microcavities differentiated by pixel electrodes, the pixel electrodes comprising the pixel electrode; and a roof layer that is disposed on a microcavity of the microcavities and includes an injection hole extending to the microcavity and a supporting member to support the microcavity; and an optical member disposed on the supporting member, wherein the injection hole is disposed between adjacent microcavities in a column direction, and the supporting member is disposed between adjacent microcavities in a row direction. Total reflection of light, had alignment, and light leakage which may occur in the display device may be prevented by the optical member.