Abstract:
A display apparatus including a first thin-film transistor (TFT) including a first semiconductor layer including a silicon semiconductor; a second TFT including a second semiconductor layer including an oxide semiconductor; a first shielding layer configured to overlap the first TFT and positioned between a substrate and the first TFT; and a second shielding layer configured to overlap the second TFT and positioned between the substrate and the second TFT.
Abstract:
A display device includes: a first electrode layer; a semiconductor layer including a source region, a drain region, and a channel region, wherein at least a portion of the source region or the drain region overlaps the first electrode layer; a second electrode layer arranged adjacent to the channel region; a third electrode layer overlapping the second electrode layer and at least a portion of the source region or the drain region; and a power line electrically connected to the first electrode layer and the third electrode layer.
Abstract:
A pixel circuit and a display apparatus. The pixel circuit includes a first transistor configured to output a driving current corresponding to a data voltage to an output node, an OLED connected to the output node and configured to emit light according to the driving current output from the first transistor, a storage capacitor coupled to the first transistor and configured to store the data voltage, a second transistor configured to receive a reference voltage from the first transistor during a first time section, configured to diode-connect the first transistor, and configured to compensate for a threshold voltage of the first transistor, and a third transistor configured to diode-connect the first transistor during a second time section, configured to receive the data voltage through the first transistor for which the threshold voltage of the first transistor is compensated, and configured to transfer the data voltage to the storage capacitor.
Abstract:
A display apparatus including a first thin-film transistor (TFT) including a first semiconductor layer including a silicon semiconductor; a second TFT including a second semiconductor layer including an oxide semiconductor; a first shielding layer configured to overlap the first TFT and positioned between a substrate and the first TFT; and a second shielding layer configured to overlap the second TFT and positioned between the substrate and the second TFT.
Abstract:
A pixel circuit and a display apparatus. The pixel circuit includes a first transistor configured to output a driving current corresponding to a data voltage to an output node, an OLED connected to the output node and configured to emit light according to the driving current output from the first transistor, a storage capacitor coupled to the first transistor and configured to store the data voltage, a second transistor configured to receive a reference voltage from the first transistor during a first time section, configured to diode-connect the first transistor, and configured to compensate for a threshold voltage of the first transistor, and a third transistor configured to diode-connect the first transistor during a second time section, configured to receive the data voltage through the first transistor for which the threshold voltage of the first transistor is compensated, and configured to transfer the data voltage to the storage capacitor.
Abstract:
An organic light-emitting display apparatus includes: a first pixel including a first pixel circuit and a first light-emitting device to emit light in response to a first driving current received from the first pixel circuit; a second pixel including a second pixel circuit and a second light-emitting device to emit light in response to a second driving current received from the second pixel circuit; and a switch circuit connected between an anode electrode of the first light-emitting device and an anode electrode of the second light-emitting device.
Abstract:
A display device includes: a first electrode layer; a semiconductor layer including a source region, a drain region, and a channel region, wherein at least a portion of the source region or the drain region overlaps the first electrode layer; a second electrode layer arranged adjacent to the channel region; a third electrode layer overlapping the second electrode layer and at least a portion of the source region or the drain region; and a power line electrically connected to the first electrode layer and the third electrode layer.
Abstract:
A display device includes: a first electrode layer; a semiconductor layer including a source region, a drain region, and a channel region, wherein at least a portion of the source region or the drain region overlaps the first electrode layer; a second electrode layer arranged adjacent to the channel region; a third electrode layer overlapping the second electrode layer and at least a portion of the source region or the drain region; and a power line electrically connected to the first electrode layer and the third electrode layer.
Abstract:
An organic light-emitting display apparatus includes: a first pixel including a first pixel circuit and a first light-emitting device to emit light in response to a first driving current received from the first pixel circuit; a second pixel including a second pixel circuit and a second light-emitting device to emit light in response to a second driving current received from the second pixel circuit; and a switch circuit connected between an anode electrode of the first light-emitting device and an anode electrode of the second light-emitting device.
Abstract:
Provided are a thin film transistor substrate which include a substrate, a buffer layer and a thin film transistor, a display apparatus including the thin film transistor substrate, and a method of manufacturing the display apparatus including the thin film transistor substrate. The buffer layer includes an inorganic insulating layer. An area ratio of a peak corresponding to an N—H bond in the buffer layer is 0.5% or less based on a total peak area in a Fourier transform infrared spectroscopy (FTIR).