Abstract:
A display device is provided including a much sensor including a touch controller and a display panel overlapped by the touch sensor and configured to display an image. A display panel driver is, electrically connected to the display panel and configured to supply a driving signal to the display panel. The display panel driver is electrically connected to the touch controller and is configured to transmit a noise sensing signal to the touch controller.
Abstract:
A display device includes a processor and a display panel for receiving observation grayscale values from the processor. The display panel includes a data driver for applying data voltages to data lines, a target pixel coupled to at least one of the data lines, and observation pixels each coupled to at least one of the data lines, and located adjacent to the target pixel. The display panel applies a first data voltage to the target pixel, when the observation grayscale values for the observation pixels exceed a reference value. The display panel applies a second data voltage to the target pixel, when at least one of the observation grayscale values does not exceed the reference value. The first data voltage and the second data voltage are different from each other.
Abstract:
A thin-film transistor includes a metal electrode and a zinc oxide-based barrier film that blocks a material from diffusing out of the metal electrode. The zinc oxide-based barrier film is made of zinc oxide doped with indium oxide, the content of the indium oxide ranging, by weight, 1 to 50 percent of the zinc oxide-based barrier film. A zinc oxide-based sputtering target for deposition of a barrier film of a thin-film transistor is made of zinc oxide doped with indium oxide, the content of the indium oxide ranging, by weight, 1 to 50 percent of the zinc oxide-based sputtering target.
Abstract:
A display device includes a processor and a display panel for receiving observation grayscale values from the processor. The display panel includes a data driver for applying data voltages to data lines, a target pixel coupled to at least one of the data lines, and observation pixels each coupled to at least one of the data lines, and located adjacent to the target pixel. The display panel applies a first data voltage to the target pixel, when the observation grayscale values for the observation pixels exceed a reference value. The display panel applies a second data voltage to the target pixel, when at least one of the observation grayscale values does not exceed the reference value. The first data voltage and the second data voltage are different from each other.
Abstract:
A display device is provided including a much sensor including a touch controller and a display panel overlapped by the touch sensor and configured to display an image. A display panel driver is, electrically connected to the display panel and configured to supply a driving signal to the display panel. The display panel driver is electrically connected to the touch controller and is configured to transmit a noise sensing signal to the touch controller.
Abstract:
A display device includes a processor and a display panel for receiving observation grayscale values from the processor. The display panel includes a data driver for applying data voltages to data lines, a target pixel coupled to at least one of the data lines, and observation pixels each coupled to at least one of the data lines, and located adjacent to the target pixel. The display panel applies a first data voltage to the target pixel, when the observation grayscale values for the observation pixels exceed a reference value. The display panel applies a second data voltage to the target pixel, when at least one of the observation grayscale values does not exceed the reference value. The first data voltage and the second data voltage are different from each other.
Abstract:
A display device includes a display driver configured to drive pixels in correspondence with input image data, timing signals, and a brightness selection signal. The display driver includes a storage unit configured to store gamma data and a duty value for each of a plurality of sample brightness levels including a K-th sample brightness level, and a brightness controller, the display driver being configured to control the brightness of the display area according to the gamma data or the duty value or gamma data obtained by non-linearly interpolating gamma data of a (K−1)-th sample brightness level and the K-th sample brightness level, with respect to a tuning point brightness level. A light emission time of the pixels corresponding to the (K−1)-th sample brightness level is less than or equal to 10% shorter than the light emission time of the pixels corresponding to the K-th sample brightness level.
Abstract:
A display device includes a processor and a display panel for receiving observation grayscale values from the processor. The display panel includes a data driver for applying data voltages to data lines, a target pixel coupled to at least one of the data lines, and observation pixels each coupled to at least one of the data lines, and located adjacent to the target pixel. The display panel applies a first data voltage to the target pixel, when the observation grayscale values for the observation pixels exceed a reference value. The display panel applies a second data voltage to the target pixel, when at least one of the observation grayscale values does not exceed the reference value. The first data voltage and the second data voltage are different from each other.
Abstract:
A display device, including: pixels coupled to scan lines and data lines; a data driver configured to supply respective data signals to the data lines, including an amplifier disposed at an output terminal of the data driver, the amplifier including a first power terminal and a second power terminal; a switch unit configured to perform a power switching operation of alternately connecting the first power terminal and the second power terminal of the amplifier to a first driving power source and a second driving power source; and a driving controller configured to control the data driver and the switch unit, wherein the driving controller is configured to output a switch control signal to control the switch unit and interrupt the power switching operation during a blank period between source output periods, during which the data driver is configured to output the data signals of each frame.
Abstract:
A display device includes: a first substrate; a plurality of pixel electrodes disposed on the first substrate; a common electrode including a plurality of common electrode plates disposed on the first substrate, where the common electrode plates cover the pixel electrodes and are arranged substantially in a matrix form; and a plurality of common electrode line groups which applies a common voltage to the common electrode plates, in which laterally adjacent common electrode plates of the common electrode plates are connected to different common electrode line groups.