Abstract:
A backlight assembly capable of reducing light loss is presented. The backlight assembly includes a plurality of substrate units and a plurality of reflective members on the substrate units arranged to form an adjacent area where two reflective members are closest to each other. The adjacent area is on one of the substrate units. A display device incorporating the backlight assembly is also presented.
Abstract:
A light emitting diode (“LED”) backlight assembly. The LED backlight assembly has a bottom container which has a bottom plate and a side edge surrounding the bottom plate, a plurality of light emitting diode printed circuit boards (“LED-PCBs”) on the bottom plate, and a connector which is closely located to edge located LEDs. The connector of the LED-PCB is closely located to an LED driving board, which is disposed at a lateral space of a lateral part of the bottom container to limit a vertical thickness of the backlight light assembly.
Abstract:
A chassis set includes a first chassis and a second chassis. The first chassis includes a first connecting portion having at least one guide protrusion. The second chassis includes a second connecting portion having at least one guide hole that receives the guide protrusion of the first chassis to combine the first and second chassis. Therefore, a manufacturing cost is reduced and productivity is enhanced. Additionally, the chassis can be made easily.
Abstract:
A light emitting diode (“LED”) backlight assembly. The LED backlight assembly has a bottom container which has a bottom plate and a side edge surrounding the bottom plate, a plurality of light emitting diode printed circuit boards (“LED-PCBs”) on the bottom plate, and a connector which is closely located to edge located LEDs. The connector of the LED-PCB is closely located to an LED driving board, which is disposed at a lateral space of a lateral part of the bottom container to limit a vertical thickness of the backlight light assembly.
Abstract:
A display panel includes a lower panel configured to display an image. The lower panel includes a plurality of unit pixels. A slit layer is disposed on the lower panel. The slit layer includes a first pattern configured to form a first slit corresponding to each of the plurality of unit pixels and a second pattern configured to form a second slit corresponding to the first slit. The slit layer is configured to project an image through the first slit and the second slit. A top layer is disposed on the slit layer. The top layer is larger than the lower panel in a plan view. The top layer is configured to have the image projected thereon.
Abstract:
A switching complex including first and second switches is disclosed. The first switch is formed on a display part of the overall display so as to generate a first switching signal based on a grip position. The second switch is formed on a corner of the display part to generate a second switching signal based on bending of the corner of the display part while the first switching signal is generated. Therefore, input is simplified, and switching errors are reduced.
Abstract:
A vacuum drying apparatus and a method of manufacturing a display apparatus by using the same. A vacuum drying apparatus according to embodiments of the present invention includes a chamber having a space formed therein, a support unit that is installed in the chamber and on which a substrate coated with a treatment solution is stably placed, a gas injection unit that is connected to the chamber to inject a treatment gas into the chamber, a decompression unit that is connected to the chamber to decompress the chamber, and a gas sensing unit that is installed with at least one of the chamber and the decompression unit to detect gas generated during drying of the treatment solution.
Abstract:
A light emitting diode (“LED”) backlight assembly. The LED backlight assembly has a bottom container which has a bottom plate and a side edge surrounding the bottom plate, a plurality of light emitting diode printed circuit boards (“LED-PCBs”) on the bottom plate, and a connector which is closely located to edge located LEDs. The connector of the LED-PCB is closely located to an LED driving board, which is disposed at a lateral space of a lateral part of the bottom container to limit a vertical thickness of the backlight light assembly.