Abstract:
A display apparatus includes a display region and a peripheral region adjacent to the display region. The display apparatus further includes a first flexible substrate (FFS), a driving circuit (DC), a conductive pattern (CP), a conductive line, a light-emitting device, and a support substrate. The FFS includes a first surface and a second surface opposite the first surface. The second surface includes, in the peripheral region, a cavity extending into the FFS. The DC is on the first surface and includes at least one transistor. The CP is in the cavity and is partially exposed by the cavity. The conductive line electrically connects the CP to the DC. The light-emitting device is in the display region and is electrically connected to the DC. The support substrate is on the second surface. In a view normal to the second surface, the support substrate is spaced apart from the CP.
Abstract:
A display device includes a light emitting element layer including a plurality of light emitting elements configured to output first color light, a color conversion layer on the light emitting element layer to receive the first color light, the color conversion layer being configured to convert the first color light so as to output at least two lights having colors different from each other, and a light collection layer between the light emitting element layer and the color conversion layer to collect the first color light, thereby providing the collected first color light to the color conversion layer. The light collection layer that collects the first color light may be disposed between the color conversion layer and the light emitting element layer to improve the light efficiency of the first color light outputted from the light emitting element layer, and also to prevent (or reduce) the colors from being mixed between the pixel areas, thereby improving the display quality.
Abstract:
An organic light-emitting display apparatus including a substrate; a first electrode on the substrate; a pixel defining layer on the substrate, the pixel defining layer including an opening exposing a portion of the first electrode and corresponding to a pixel; an organic light-emitting layer disposed on the first pixel electrode in the opening; a second electrode on the pixel defining layer and the organic light-emitting layer; and an auxiliary electrode contacted on the second electrode, disposed on the pixel defining layer.
Abstract:
A display apparatus includes a display region and a peripheral region adjacent to the display region. The display apparatus further includes a first flexible substrate (FFS), a driving circuit (DC), a conductive pattern (CP), a conductive line, a light-emitting device, and a support substrate. The FFS includes a first surface and a second surface opposite the first surface. The second surface includes, in the peripheral region, a cavity extending into the FFS. The DC is on the first surface and includes at least one transistor. The CP is in the cavity and is partially exposed by the cavity. The conductive line electrically connects the CP to the DC. The light-emitting device is in the display region and is electrically connected to the DC. The support substrate is on the second surface. In a view normal to the second surface, the support substrate is spaced apart from the CP.
Abstract:
A color filter unit having improved optical efficiency and color reproduction and a display apparatus including the color filter unit are provided. The display apparatus includes a first pixel, a second pixel, and a third pixel on a first substrate, the first pixel, the second pixel, and the third pixel are configured to emit light of different colors from one another, wherein each of the first pixel and the second pixel includes a display element, a light scattering layer corresponding to the display element, the light scattering layer comprising first scattering particles and first quantum dots, and a color conversion layer on the light scattering layer, the color conversion layer including second scattering particles and second quantum dots configured to convert incident light into light of a set color.
Abstract:
A display apparatus includes a display region and a peripheral region adjacent to the display region. The display apparatus further includes a first flexible substrate (FFS), a driving circuit (DC), a conductive pattern (CP), a conductive line, a light-emitting device, and a support substrate. The FFS includes a first surface and a second surface opposite the first surface. The second surface includes, in the peripheral region, a cavity extending into the FFS. The DC is on the first surface and includes at least one transistor. The CP is in the cavity and is partially exposed by the cavity. The conductive line electrically connects the CP to the DC. The light-emitting device is in the display region and is electrically connected to the DC. The support substrate is on the second surface. In a view normal to the second surface, the support substrate is spaced apart from the CP.
Abstract:
An organic light-emitting display apparatus, including a pixel electrode; a pixel definition layer covering at least a portion of an edge of the pixel electrode; an emission layer on the pixel electrode; and a first intermediate layer on the pixel electrode and the pixel definition layer, the first intermediate layer having a first through hole corresponding to at least a portion of an upper surface of the pixel definition layer.
Abstract:
A method of manufacturing an organic light-emitting display apparatus including forming a first electrode on a substrate, forming a pixel defining layer on the substrate, forming a second electrode on the pixel defining layer and a portion of the first electrode, forming a sacrificial layer on the second electrode, patterning the sacrificial layer so as to expose a portion of the second electrode wherein the portion of the second electrode is disposed on the pixel defining layer, forming a conductive layer on the sacrificial layer and the portion of the second electrode, and removing the sacrificial layer such that a portion of the conductive layer on the portion of the second electrode remains.
Abstract:
An organic light-emitting display apparatus, including a pixel electrode; a pixel definition layer covering at least a portion of an edge of the pixel electrode; an emission layer on the pixel electrode; and a first intermediate layer on the pixel electrode and the pixel definition layer, the first intermediate layer having a first through hole corresponding to at least a portion of an upper surface of the pixel definition layer.