Abstract:
A display device includes a display panel including a bendable display panel including a substrate and a plurality of pad portions on the substrate. The substrate includes a cutout between adjacent pad portions of the plurality of pad portions.
Abstract:
A flexible display device includes a display panel including a flexible substrate, a display layer on the flexible substrate and including an electro-optical active layer, an encapsulation layer on the display layer, and a touch electrode layer. The touch electrode layer may include a first touch electrode layer under the display layer and including a plurality of first touch electrodes and a plurality of first touch signal lines coupled to the first touch electrodes, and a second touch electrode layer on the display layer such that the display layer is between the first touch electrode layer and the second touch electrode layer and including a plurality of second touch electrodes and a plurality of second touch signal lines coupled to the second touch electrodes.
Abstract:
A flexible display panel and a manufacturing method which is capable of removing a non-display area without damaging a display element layer, the flexible display panel includes a flexible substrate which includes a display area and a peripheral area outside of the display area, a display element layer disposed on the flexible substrate, and a neutral plane balancing layer disposed on the display element layer in the peripheral area, wherein the peripheral area of the flexible substrate in which the neutral plane balancing layer is disposed is folded towards a rear side of the display area along a first bending line, and the neutral plane balancing layer overlaps the first bending line.
Abstract:
A flexible display panel and a manufacturing method which is capable of removing a non-display area without damaging a display element layer, the flexible display panel includes a flexible substrate which includes a display area and a peripheral area outside of the display area, a display element layer disposed on the flexible substrate, and a neutral plane balancing layer disposed on the display element layer in the peripheral area, wherein the peripheral area of the flexible substrate in which the neutral plane balancing layer is disposed is folded towards a rear side of the display area along a first bending line, and the neutral plane balancing layer overlaps the first bending line.
Abstract:
A display device includes a flexible substrate having a display area for displaying an image, and a pad area adjacent the display area, a circuit film coupled to the flexible substrate at the pad area, and a passivation layer on at least a part of the circuit film and at part of the pad area.
Abstract:
Disclosed is an organic light emitting diode display including an organic light emitting display panel configured to display an image, and a lower passivation film attached to a bottom of the organic light emitting diode display panel. The lower passivation film includes a support film that is in contact with the organic light emitting diode display panel, and a stress adjustment layer formed beneath the support film and configured to reduce a bending stress to be induced in the organic light emitting display panel when the organic light emitting display panel and the lower passivation film are bent.
Abstract:
Disclosed is an organic light emitting diode display including an organic light emitting display panel configured to display an image, and a lower passivation film attached to a bottom of the organic light emitting diode display panel. The lower passivation film includes a support film that is in contact with the organic light emitting diode display panel, and a stress adjustment layer formed beneath the support film and configured to reduce a bending stress to be induced in the organic light emitting display panel when the organic light emitting display panel and the lower passivation film are bent.
Abstract:
A display device includes a display panel including a substrate, pixels provided on the substrate, and first lines connected to the pixels, the display device having a bending area where the display panel is bent. The display panel also includes a chip on film overlapping with a portion of the display panel and having second lines, an anisotropic conductive film provided between the chip on film and the display panel connecting the first lines and the second lines, and a coating layer covering the bending area and one end of the chip on film. In such a device, lines of the chip on film may be prevented from being corroded as they may be spaced apart from an edge of an insulating film.
Abstract:
A flexible display panel and a manufacturing method which is capable of removing a non-display area without damaging a display element layer, the flexible display panel includes a flexible substrate which includes a display area and a peripheral area outside of the display area, a display element layer disposed on the flexible substrate, and a neutral plane balancing layer disposed on the display element layer in the peripheral area, wherein the peripheral area of the flexible substrate in which the neutral plane balancing layer is disposed is folded towards a rear side of the display area along a first bending line, and the neutral plane balancing layer overlaps the first bending line.
Abstract:
An organic light emitting diode (OLED) display includes: a display layer including a front display layer configured to display an image at a front of the OLED display and a bending display layer bent at an end of the front display layer, and a thin film encapsulation layer covering the display layer. The thin film encapsulation layer includes a front encapsulation layer disposed on the front display layer and a bending encapsulation layer disposed on the bending display layer and having a plurality of pores.