Abstract:
A liquid crystal display includes: a first substrate including a first through-hole; a second substrate facing the first substrate and including a second through-hole corresponding to the first through-hole; a sealant coupling the first substrate and the second substrate; a liquid crystal layer disposed between the first substrate and the second substrate; a spacer disposed between the first substrate and the second substrate; and a supporting assistance member including a third through-hole connected to the first through-hole and the second through-hole, wherein the supporting assistance member includes a first supporting assistance member made with the same material as the spacer.
Abstract:
A display panel includes a display area configured to display an image, and a peripheral area adjacent to the display area. The peripheral area includes a pad area in which a plurality of output pads are disposed. The output pads are arranged in a matrix formed having M row*N column (M and N are normal numbers, M is 3 or larger than 3). Each of the output pads has a center of the output pad spaced apart from a center of an adjacent output pad by a distance D in a first direction. Each of the output pads is spaced apart from an adjacent output pad by a gap. Each of the output pads has a center of the output pad spaced apart from a center of an adjacent output pad by a pitch P in a second direction which is substantially perpendicular to the first direction. An equation “P
Abstract:
A display device including a first substrate comprising a first surface, a second substrate overlapping the first substrate and including a second surface overlapping the first surface, a display unit between the first substrate and the second substrate, and a supporting assistance member disposed between the first surface and the second surface, in which the supporting assistance member includes a first region and a second region, at least one of the first substrate and the second substrate includes a third region and a fourth region, transmittance of the first region is higher than transmittance of the second region, transmittance of the third region is higher than transmittance of the fourth region, and the second region surrounds the first region, the fourth region surrounds the third region, and the first region and the third region overlap each other.
Abstract:
A liquid crystal display includes: a first substrate including a first through-hole; a second substrate facing the first substrate and including a second through-hole corresponding to the first through-hole; a sealant coupling the first substrate and the second substrate; a liquid crystal layer disposed between the first substrate and the second substrate; a spacer disposed between the first substrate and the second substrate; and a supporting assistance member including a third through-hole connected to the first through-hole and the second through-hole, wherein the supporting assistance member includes a first supporting assistance member made with the same material as the spacer.
Abstract:
A display panel includes a timing controller embedded data driver and a first data driver. The timing controller embedded data driver includes an image processing part and an internal data driving part. The image processing part generates a first data signal corresponding to a first display area and a second data signal corresponding to a second display area based on input image data. The internal data driving part generates a second data voltage based on the second data signal to output the second data voltage to the second display area. The first data driver is disposed at a first side of the timing controller embedded data driver. The first data driver receives the first data signal from the timing controller embedded data driver and generates a first data voltage based on the first data signal to output the first data voltage to the first display area.
Abstract:
A display device including voltage lines to transfer a power voltage is disclosed. One inventive aspect includes a display panel, a data driver formed on the display panel, a printed circuit board supplying a voltage to the data driver, and voltage lines connecting the data driver to the printed circuit board. The voltage lines further includes a first voltage line transferring a first power voltage, a second voltage line transferring the first power voltage or a second power voltage, a third voltage line transferring the second power voltage or a third power voltage, and a fourth voltage line transferring the third power voltage.
Abstract:
A display panel includes a timing controller embedded data driver and a first data driver. The timing controller embedded data driver includes an image processing part and an internal data driving part. The image processing part generates a first data signal corresponding to a first display area and a second data signal corresponding to a second display area based on input image data. The internal data driving part generates a second data voltage based on the second data signal to output the second data voltage to the second display area. The first data driver is disposed at a first side of the timing controller embedded data driver. The first data driver receives the first data signal from the timing controller embedded data driver and generates a first data voltage based on the first data signal to output the first data voltage to the first display area.
Abstract:
A display panel includes a timing controller embedded data driver and a first data driver. The timing controller embedded data driver includes an image processing part and an internal data driving part. The image processing part generates a first data signal corresponding to a first display area and a second data signal corresponding to a second display area based on input image data. The internal data driving part generates a second data voltage based on the second data signal to output the second data voltage to the second display area. The first data driver is disposed at a first side of the timing controller embedded data driver. The first data driver receives the first data signal from the timing controller embedded data driver and generates a first data voltage based on the first data signal to output the first data voltage to the first display area.
Abstract:
A display device including voltage lines to transfer a power voltage is disclosed. One inventive aspect includes a display panel, a data driver formed on the display panel, a printed circuit board supplying a voltage to the data driver, and voltage lines connecting the data driver to the printed circuit board. The voltage lines further includes a first voltage line transferring a first power voltage, a second voltage line transferring the first power voltage or a second power voltage, a third voltage line transferring the second power voltage or a third power voltage, and a fourth voltage line transferring the third power voltage.
Abstract:
A display panel includes a display area configured to display an image, and a peripheral area adjacent to the display area. The peripheral area includes a pad area in which a plurality of output pads are disposed. The output pads are arranged in a matrix formed having M row*N column (M and N are normal numbers, M is 3 or larger than 3). Each of the output pads has a center of the output pad spaced apart from a center of an adjacent output pad by a distance D in a first direction. Each of the output pads is spaced apart from an adjacent output pad by a gap. Each of the output pads has a center of the output pad spaced apart from a center of an adjacent output pad by a pitch P in a second direction which is substantially perpendicular to the first direction. An equation “P