Abstract:
A display device includes a substrate, a display structure, and a conductive line. The substrate includes a display region having a plurality of pixel regions and a peripheral region surrounding the display region. Each of the pixel regions has sub-pixel regions and a transparent region. The display structure is disposed in each of the pixel regions of the display region. The conductive line is disposed in the peripheral region, and is electrically connected to the display structure. The conductive line has at least one opening.
Abstract:
An organic light-emitting display apparatus includes a first substrate including a display unit having a light-emitting region and a non-light-emitting region, a second substrate parallel to the first substrate, and a reflective member on a surface of the second substrate that faces the first substrate, the reflective member corresponding to the non-light-emitting region of the display unit and being configured to sense touch, and the reflective member including a plurality of first pattern parts electrically connected along a first direction and a plurality of second pattern parts electrically connected along a second direction.
Abstract:
A display device and a method of manufacturing the same. The display device includes: a substrate; and a reflection member that is disposed on a surface of the substrate and has a first thickness in a first reflection region corresponding to a light-emitting region and a second thickness in a second reflection region corresponding to a non-light-emitting region.
Abstract:
An organic light emitting display apparatus includes a substrate, an encapsulation member facing the substrate, a plurality of pixels between the substrate and the encapsulation member, each pixel including a light emission area and a non-emission area, a first electrode overlapping at least the light emission area, an intermediate layer on the first electrode and including an organic emission layer, a second electrode on the intermediate layer, and a reflective member on a bottom surface of the encapsulation member, the bottom surface of the encapsulation member facing the substrate, and the reflective member including an opening corresponding to the light emission area, and a reflective surface around the opening and corresponding to the non-emission area.
Abstract:
A pixel unit includes a first organic light emitting diode for a front-side emission, a second organic light emitting diode for a back-side (both-sides) emission, and a pixel circuit configured to driver the first and second organic light emitting diodes. The pixel unit PU may include a pixel circuit, a first organic light emitting diode and a second organic light emitting diode.
Abstract:
A mirror display apparatus includes a display unit, a thin film encapsulation layer, a plurality of mirror patterns, a protection layer and a refractive index matching layer. The display unit is disposed on a substrate. The thin film encapsulation layer extends continuously on a surface of the display unit. The mirror patterns are arranged on the thin film encapsulation layer. The protection layer is disposed on surfaces of the mirror patterns. The refractive index matching layer is interposed between the thin film encapsulation layer and the protection layer, and the refractive index matching layer fills regions between neighboring ones of the mirror patterns. A refractive index of the refractive index matching layer is less than a refractive index of the thin film encapsulation layer, and the refractive index of the refractive index matching layer is greater than a refractive index of the protection layer.
Abstract:
A display device and a method of manufacturing the same. The display device includes: a substrate; and a reflection member that is disposed on a surface of the substrate and has a first thickness in a first reflection region corresponding to a light-emitting region and a second thickness in a second reflection region corresponding to a non-light-emitting region.
Abstract:
An organic light emitting display apparatus includes a substrate, an encapsulation member facing the substrate, a plurality of pixels between the substrate and the encapsulation member, each pixel including a light emission area and a non-emission area, a first electrode overlapping at least the light emission area, an intermediate layer on the first electrode and including an organic emission layer, a second electrode on the intermediate layer, and a reflective member on a bottom surface of the encapsulation member, the bottom surface of the encapsulation member facing the substrate, and the reflective member including an opening corresponding to the light emission area, and a reflective surface around the opening and corresponding to the non-emission area.
Abstract:
An organic light display device includes a first substrate, light emitting structures, a second substrate and a reflective member. The first substrate includes a plurality of pixel regions, each pixel region including a plurality of sub-pixel regions, and a reflective region which surrounds the sub-pixel regions. The reflective region excludes the sub-pixel regions. The light emitting structures are respectively disposed in the sub-pixel regions on the first substrate. The second substrate is opposite to the first substrate. The reflective member is disposed in the reflective region on the lower surface of the second substrate. First openings exposing the sub-pixel regions and a second opening exposing at least a portion the reflective region are located in the reflective member.
Abstract:
An organic light emitting display apparatus includes a substrate, an encapsulation member facing the substrate, a plurality of pixels between the substrate and the encapsulation member, each pixel including a light emission area and a non-emission area, a first electrode overlapping at least the light emission area, an intermediate layer on the first electrode and including an organic emission layer, a second electrode on the intermediate layer, and a reflective member on a bottom surface of the encapsulation member, the bottom surface of the encapsulation member facing the substrate, and the reflective member including an opening corresponding to the light emission area, and a reflective surface around the opening and corresponding to the non-emission area.