Abstract:
A semiconductor element includes a substrate, a gate electrode, an active layer, a contact layer, a first electrode, and a second electrode. The gate electrode is disposed on the substrate. The gate insulation layer is disposed on the gate electrode. The active layer is disposed on the gate insulation layer, and includes a first end portion and a second end portion that is opposite the first end portion. The contact layer overlaps the second end portion of the active layer. The first electrode is in contact with the first end portion. The second electrode is spaced apart from the first electrode, and is in contact with the contact layer.
Abstract:
An organic light-emitting display device, which may be configured to prevent moisture or oxygen from penetrating the organic light-emitting display device from the outside is disclosed. An organic light-emitting display device, which is easily applied to a large display device and/or may be easily mass produced is further disclosed. Additionally disclosed is a method of manufacturing an organic light-emitting display device. An organic light-emitting display device may include, for example, a thin-film transistor (TFT) including a gate electrode, an active layer insulated from the gate electrode, source and drain electrodes insulated from the gate electrode and contacting the active layer and an insulating layer disposed between the source and drain electrodes and the active layer; and an organic light-emitting diode electrically connected to the TFT. The insulating layer may include, for example, a first insulating layer contacting the active layer; and a second insulating layer formed of a metal oxide and disposed on the first insulating layer.
Abstract:
According to an aspect of the present invention, there is provided a back plane for a flat-panel display device and a method of manufacturing the same. The back plane including: a substrate; a gate electrode on the substrate; a first insulation layer on the substrate and covering the gate electrode; a semiconductor layer on the first insulation layer and corresponding to the gate electrode; and a source electrode and a drain electrode on the semiconductor layer and electrically coupled to respective portions of the semiconductor layer. Here, the semiconductor layer includes indium, tin, zinc, and gallium, and an atomic concentration of the gallium is from about 5% to about 15%.
Abstract:
Disclosed is a method of manufacturing an organic light-emitting display device. An organic light-emitting display device may include, for example, a thin-film transistor (TFT) including a gate electrode, an active layer insulated from the gate electrode, source and drain electrodes insulated from the gate electrode and contacting the active layer and an insulating layer disposed between the source and drain electrodes and the active layer; and an organic light-emitting diode electrically connected to the TFT. The insulating layer may include, for example, a first insulating layer contacting the active layer; and a second insulating layer formed of a metal oxide and disposed on the first insulating layer.
Abstract:
A semiconductor element includes a substrate, a gate electrode, an active layer, a contact layer, a first electrode, and a second electrode. The gate electrode is disposed on the substrate. The gate insulation layer is disposed on the gate electrode. The active layer is disposed on the gate insulation layer, and includes a first end portion and a second end portion that is opposite the first end portion. The contact layer overlaps the second end portion of the active layer. The first electrode is in contact with the first end portion. The second electrode is spaced apart from the first electrode, and is in contact with the contact layer.
Abstract:
An organic light-emitting display device, which may be configured to prevent moisture or oxygen from penetrating the organic light-emitting display device from the outside is disclosed. An organic light-emitting display device, which is easily applied to a large display device and/or may be easily mass produced is further disclosed. An organic light-emitting display device may include, for example, a thin-film transistor (TFT) including a gate electrode, an active layer insulated from the gate electrode, source and drain electrodes insulated from the gate electrode and contacting the active layer and an insulating layer disposed between the source and drain electrodes and the active layer; and an organic light-emitting diode electrically connected to the TFT. The insulating layer may include, for example, a first insulating layer contacting the active layer; and a second insulating layer formed of a metal oxide and disposed on the first insulating layer.
Abstract:
A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include source and drain electrodes formed on a substrate; an active layer formed of an oxide semiconductor disposed on the source and drain electrodes; a gate electrode; and an interfacial stability layer formed on at least one of top and bottom surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristics as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.